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Abstract

Interval orders are a way to model non-transitive indifference in com-
parison judgments as well as temporal relations between “events”.
While so far only characterizations of their representability by com-
plete precedence vs. intersecting of closed or open (and bounded) real
intervals have been known, this paper presents necessary and sufficient
conditions for their representability by arbitrary real intervals as well as
a new characterization for open representability. Furthermore we, like
Fishburn, consider natural restrictions on representations and extend
respective results of his. Accordingly, we also deal with semiorders in
the sense of Luce. Interrelations of countability (separability, repre-
sentability) conditions (“directly” in terms of interval orders) reveal
two redundancies in Fishburn’s representability conditions and indi-
cate more direct ways to his results. The key to our results is a pair of
generalizations of Fishburn’s notion of “singularity”.
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1 Introduction and summary.

Interval orders model comparison judgments in experimental psychology
(perception/evaluation of objects/persons) as well as comparison judgments
concerning utilities of alternatives in economic theory—cf. [9, p. 20f.], [16,
pp. 19ff.]. In both cases, indifference of judgment may well be non-transitive
(in these realms, however, interval orders like to be replaced by the some-
what more special “semiorders”, cf. [13, 16]). “Utility functions” are (in
general) not applicable in such situations. Interval orders also have served
to model temporal relationships among events in philosophical ontology (see
references in [19, 20]) and in computer science. (For further applications see
[references in] [16, pp. 19ff.], [9, pp. 19ff.], or [17, p. 255].)1 They may be
defined to be representable by the relationships of complete precedence and
of intersecting between intervals of linear orders.

Which interval orders may, in particular, in this manner be represented
by intervals with respect to the linear ‘less than’-relation between real num-
bers? This question seems to be held important for the applicability of
mathematics to the sciences (at least to the ones mentioned above), and,
actually, has occupied all non-philosophical published work on “represent-
ability” of interval orders. Such a representation may be considered an
appropriate variant of a utility function and would, in an extended man-
ner, fit the research programme of “classical” measurement theory (cf. [11]),
where everything “empirical” must be tried to be viewed as something made
out of the real numbers.2

While the literature so far only has characterized interval orders rep-
resentable by complete precedence vs. intersecting of closed or open (and

1As further examples archeology and paleontology are listed, where the duration of
such “events” may exceed lifetimes.

2Reservations against this research programme—as espoused, e.g., in [14] —are not
considered an obstacle to happily presenting here results fitting it.
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bounded) real intervals (usually equivalently considering pairs of functions
and involving questions of [semi-]continuity of interval borders with respect
to some topology on the alternatives), this paper presents necessary and
sufficient conditions for their representability by arbitrary real intervals (dis-
regarding continuity, however). Moreover, a new characterization of repre-
sentability by open real intervals is offered.

Some of the countability and “separability” conditions involved in these
characterizations of real representability interrelate. These interrelations
yield alternative or even shorter proofs of some of Fishburn’s [8, 9, Sec.s 7.5f.]
results and add alternative (“logically/practically weaker”) solutions to a
characterization problem previously solved by Fishburn and [15].

We shall begin with briefly reporting these results on “closed” real repre-
sentability known so far that do not consider continuity of interval borders,
only preceded by a minimal amount of conventions required in that re-
port, and followed by some improvement concerning real representability of
semiorders. We shall then present our characterizations of “arbitrary” and
of “open” real representability (starting with a brief report of Fishburn’s
[8, 9] contribution and closing with an improvement of his characterization
result). The “position” of one of Fishburn’s representability conditions, and
two aspects of “minimality” of representations will be discussed briefly. We
shall finish presentation of own results by considering extensions of theo-
rems of Fishburn’s [8, 9] concerning semiorders, taking into account those
“minimality” notions. We shall briefly wonder about empirical significance
of our results. After extending notational machinery and order-theoretical
background, we shall proceed by the obvious explanations concerning “un-
bounded” real representations and “function pair representations”, then by
proving the remaining claims, concerning interrelations between represent-
ability (separability, countability) conditions first, concerning necessity of
characterizing conditions next, and concerning sufficiency finally.

2 First preliminaries.

2.1 Binary relations.

If R ⊆ X ×X (R a binary relation on the largest set X mentioned so far),
we write x R y for (x, y) ∈ R, by ∼R we denote X × X \ (R ∪ R−1) (the
symmetric complement of R),3 and ≺∼R is R ∪ ∼R. We shall use the latter
notation for asymmetric4 relations R only. For these, propositional logic
obtains that a ≺∼R b just means not b R a (≺∼R is the “reverse negation” of
R).

3By R−1 we mean the binary relation defined by x R−1 y iff y R x.—Some notations
are vague concerning X, but this will not matter.

4R being asymmetric means R ∩R−1 = ∅.
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A set Y will be called R-separable if there is some countable subset
D ⊆ Y such that for all x, y ∈ Y such that x R y there is d ∈ D such
that x ≺∼R d ≺∼R y.—We shall apply this notion to a class of (in particular:
asymmetric) relations only, for which two other definitions of separability
notions given in [3, 1.4.3.f.] and used in other work on real representability
of binary relations are equivalent.5 In this respect, the notion is somewhat
“more widely applicable than it seems at first”.

If a statement is logically or set-theoretically equivalent to a statement
only involving X and R, replacing R by its converse R−1 yields the dual
statement. If notions derived from X and R are involved, it will be clear
what the dual is, as well. It will also (at any instance) be clear what the
dual of a notion is. We shall often deal with pairs of assumptions or notions
dual to each other. In such cases, reasonings can be dualized as well, and
we shall treat only one version explicitly. Cf. [1, p. 13].

We write RR′ for the composition of any binary relations R,R′.6

2.2 Interval representations and interval orders.

A binary relation L (strictly) linearly orders some set Q—and (Q,L) will
then be called a linear order—, if L ∩ (Q×Q) is irreflexive, transitive and
trichotomic (connex, “complete”).7 A (corresponding) interval (a non-void
“convex” subset) is a non-void subset H of Q such that for all x, y ∈ H
each situation x L z L y implies z ∈ H. I(Q,L) will denote the set of these
intervals.

If R is some binary relation and X some set, some ρ will be said to be an
interval representation (IR) of (X,R) in (Q,L) if L linearly orders Q and if
ρ is a map X → I(Q,L) such that

x R y iff ∀p ∈ ρ(x) ∀q ∈ ρ(y) : p L q.

ρ[A] (the image of A under ρ) may contain only closed and bounded intervals
(i.e., they contain their boundary points); ρ will then be called a closed and
bounded IR (CBIR) itself.

By [9, Thm. 2.6], an interval order may now be defined to be an ordered
pair (X,R) which has a CBIR in some linear order. In fact, from the result
cited one can derive that any (X,R) having an IR has a CBIR. Therefore,
an interval order can as well be defined by the property of just having some
IR.

5In fact, while Fishburn’s [8] uses the definition given above, his [9] uses one of these two
other definitions. More precisely: he uses the respective notions—never actually using the
term ‘separable’. The difference stems from different definitions of ‘(order-)dense’—cf. our
Subsection 4.8 below. As a consequence, the appearence that [8] and [9, Sec.s 7.4–7.6]
would state and prove the same theorems would not be quite correct. However, we shall
ignore the difference in the sequel.

6I.e., for { (x, y) | ∃z : x R z R′ y }.
7To be explicit, trichotomicity of R means that whenever x 6= y, x R y or y R x.
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As a simple example, the intervals of a linear order (Q,L) together with
their relation of “complete precedence” with respect to L8 trivially form
an interval order—the natural interval order of (Q,L). (The term ‘natural
interval order’ will also be used for suborders of such interval orders.) An IR
of (X,R) may then just be viewed as a “strong”9 homomorphism from (X,R)
to the natural interval order of some linear order, and “general” interval
orders are just those (X,R) from which there is such a strong homomorphism
into some natural interval order.

From now on, we deal especially with one arbitrary interval order (A, T )
where T ⊆ A× A. A may well be infinite (otherwise representability prob-
lems to be dealt with would be trivial); but A must not be void. Introducing
I as ∼T gives rise to the well-known composite binary relations IT and TI
on A, properties of which will be recalled below.

2.3 Visualization.

However, at this stage some visualization of IT and TI may be helpful.
Assume for a moment A is a three-element set {a, b, c} and T = {(a, b)}.
This situation may be visualized by Figure 1. a T b is visualized by arranging

a b
c

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(some quantity? time?)

Figure 1: A = {a, b, c}, T = {(a, b)}.

horizontal strokes representing a and b so that a vertical stroke can be filled
in right-hand to the horizontal stroke representing a and left-hand to the
horizontal stroke which represents b.

In contrast, no vertical stroke would have two horizontal strokes on dif-
ferent sides such that one of them would represent a and the other would
represent c. This holds for b in place of a, as well. Rather, c is “overlapping”
a as well as b—this is a I c I b.

Furthermore, that c “starts at the left of” b is “witnessed” by a overlap-
ping c but wholly preceding b—this is c IT b. Similarly, a “ends to the left
of where c ends”, “witnessed” by b overlapping c but being wholly preceded
by a—this is a TI c.10

However, one cannot “read” a IT c from the diagram, since there is no
“witness” d such that a I d T c.

8To be precise, this relation !L!, say, of “complete precedence” with respect to L is
meant to be defined by, for H0, H1 ∈ I(Q,L), H0 !L! H1 iff, for all p ∈ H0 and all q ∈ H1,
p L q.

9Cf. [3, 1.1.9].
10In the interpretation of the situation as temporally related events, c begins earlier

than b, while a ends earlier than c.
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With the latter reservation, such visualizations show all properties of T ,
I, IT , and TI that will be needed, and they may be helpful in checking and
understanding respective claims below.

3 Known and new results.

3.1 “Closed” representability as known.

Particular interest has been enjoyed by those CBIRs of (A, T ) in (R, <), the
“less-than” ordering of the real numbers—we call them closed bounded real
interval representations (CBRIRs). A real interval is just meant to be an
element of I(R, <).

CBRIRs usually appear as function pair representations (FPRs), i.e., as
maps u, v : A→ R such that

a T b iff v(a) < u(b).

(u ≤ v follows.) More precisely, if F is a CBRIR, u : A → R, a 7→ inf F (a)
and v : A → R, a 7→ supF (a) form a FPR; and if (u, v) is a FPR, a 7→
[u(a), v(a)] is a CBRIR.11 So existence of a FPR is the same as existence
of a CBRIR. Mathematical economy typically asks for such representations
by (semi-)continuous functions with respect to some topology on A (which
may be viewed, e.g., as a subset of Rn)—see [3, Chap. 6], in particular for
Chateauneuf’s solution of a respectively restricted version of the problem
that the present subsection deals with.

Fishburn ([8, 9, Sec. 7.5]) presented a necessary and sufficient condition
for the existence of a CBRIR that can be stated as a conjunction of two
parts. The first of them is:

(F1) A be IT - as well as TI-separable.

Unlike pairs of countability conditions dual to each other the equivalence of
which turns out below, IT - and TI-separability are independent.12 There
is some redundancy in the above presentation of (F1), however, which will
be revealed in Subsection 6.5 below.

Knowing that ∼TI is an equivalence relation and that a singular element
a of A is (by Fishburn’s [8] definition)13 one for which b I a I c implies b I c,
the second part of Fishburn’s condition can be stated thus:

11According to widespread use, [u(a), v(a)] here denotes { r ∈ R | u(a) ≤ r ≤ v(a) }, of
course.

12An example for each direction of non-implication is provided by the “self-representing”
interval order of all (bounded) real intervals which contain their lower [upper, resp.] bound-
ary. Thus, [r, s) as well as [r, s] occur in one of the two examples. The example depends
essentially on the fact that, e.g., [s, s] “witnesses” the former two intervals ending differ-
ently upwards.

13In [9], Fishburn uses the term ‘simplicial’ instead for some graph-theoretical reason.
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(F2) There be only countably many TI-equivalence classes14 which contain
no singular element and for an element b of which the set of a such
that b T a has some IT -minimum, but no singular one.15

One may feel uneasy with such counting equivalence classes in a char-
acterization of some interval orders. To avoid it, one may (at the cost of
assuming the Axiom of Choice)16 word (F2) equivalently thus: Every subset
C of A which is linearly ordered by TI, which contains no singular element,
and for every element c of which the set of a such that c T a has some
IT -minimum, but no singular one, be countable.

Oloriz, Candeal and Induráin [15] from the (Public) Universities of Pam-
plona and Zaragoza (Spain), obviously not aware of Fishburn’s result, more
recently presented another necessary and sufficient existence condition, viz.

(E) there be a countable D ⊆ A such that for all (a, b) ∈ T there is some
d ∈ D such that a T d ≺∼IT b.

17

As a “test” that both Fishburn and the Spanish authors are right (if
one of them is), one may reason just in terms of (A, T ) that the conjunction
of Fishburn’s conditions (F1), (F2) is equivalent to the “Spanish” condition
(E). This will be done (not as a “test”, but just to show it) in Subsection 6.3
below.

A slightly weaker characterization has been presented by Doignon et al.
[6, Prop. 9f.] already in 1984, using

(D1) there be a countable D ⊆ A such that for all (a, b) ∈ T there is some
d ∈ D such that a T d ≺∼IT b or a ≺∼TI d T b.

One could drop the restriction of boundedness and consider CRIRs—
note that, in topological terminology, a real interval having just one bound-
ary which it contains counts as closed (as a closed set, at least). By the
same token, even R is a “closed” real interval.—Clearly, CRIRs do not re-
ally make a difference; though the following summary including them might
be welcome.18

14TI-equivalence, of course, is meant to be∼TI—since this is known to be an equivalence
relation (as will be indicated below or clear from the “visualization” above).

15Fishburn’s way of stating this condition may be more perspicuous, but the way we
have presented it better fits into the framework of the present paper. Some notation and
reasoning introduced below should, however, improve perspicuity of (F2)—see Subsec-
tion 6.2.

16Cf., e.g., [12]. The present author is, up to now, not able to see how the Countable
Axiom of Choice could suffice for both directions to be proved.

17At least, this is a way of stating the condition the present author prefers. We shall
return to this “translation problem” in Subsection 6.3.—IT is, in fact, asymmetric, so
d ≺∼IT b means not b IT d as well as d (IT∪ ∼IT ) b here.

18Literally, Fishburn’s [8] deals with ‘closed-interval representability’ in the sense of
existence of a CRIR: In proving his Thm. 5 on [8, p. 102], he takes care of unbounded in-
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Theorem 1 (Fishburn; Oloriz/Candeal/Induráin). The following condi-
tions are equivalent.

(i) (A, T ) has a CBRIR;

(ii) (A, T ) has a CRIR;

(iii) (A, T ) has a FPR;

(iv) (F1) and (F2) hold;

(v) (E) holds;

(vi) (D1) holds.

In this summary, however, Conditions (F1) and (F2) may be replaced by
somewhat weaker ones. This will be done in Theorem 7 in Subsection 3.3
and in Theorem 11 in Subsection 6.5.

Following Fishburn [8], we could have told more in the following way:
In place of assuming (A, T ) to be an interval order, we could have assumed
nothing more than T ⊆ A × A—at the same time augmenting conditions
(iv) through (vi) by and (A, T ) is an interval order. Indeed, each of the first
two conditions of Theorem 1 (under the parsimonious assumption) implies
that (A, T ) is an interval order according to Subsection 2.2.—This remark
applies respectively to our representation theorems of subsections 3.3 and
3.5–3.7 below.19

3.2 Some improvement concerning semiorders.

Following Luce [13], (A, T ) is a semiorder if (additionally to being an interval
order) a T c T b excludes a I d I b, i.e., no representing interval intersects
each of three pairwise non-intersecting representing intervals. This may

tervals. On p. 92 of the same paper, he defines “closed-interval representable” by existence
of a RIR (cf. Subsection 3.3) such that taking the closures of the image intervals yields a
RIR again (assuming ‘inf A =∞’ in case A has no lower bound etc.). By his own under-
standing, such intervals just need not be bounded! On p. 95, however, he assumes without
explanation that, for a given ‘closed-interval representation’ ρ, there is pair of maps u, v
such that ρ(x) = [u(x), v(x)].—In [9], in contrast, Fishburn defines “closed-interval rep-
resentable” explicitly by existence of a FPR (in the sequel telling the same story as in
[8]).—These observations indicate that Fishburn (already in [8]) considers closed inter-
vals bounded (this may be common use), while he may have overlooked something on
his [8, p. 92] (e.g., in writing the sentence following his (2), he may have thought that
“closing open ends” turned RIRs into CBRIRs, disregarding unbounded image intervals).
However, there is no plain error; it only might have been appropriate to supplement the
reasoning of p. 95 by a similar hint on monotone transformations with bounded image set
as on p. 102 in order to explain that his ‘closed-interval representable’ entails existence of
a CBRIR.

19We cling to displaying the weaker versions for seeming better readability of the theo-
rems and streamelinedness of the respective proofs.
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be understood as representing intervals having “similar length”, maybe in
connection with a constant threshold of noticeable differences with respect
to some quality of experimental stimuli or to subjective utility.

For semiorders, the relation

T0 := IT ∪ TI

is of particular importance. In Fishburn’s [8, 9], representability theorems
for interval orders involving (F1) are followed by respective variants for
semiorders where (F1) is replaced by T0-separability. In proofs of such vari-
ant theorems, Fishburn states that T0-separability (obviously) implies (F1),
whereas he proves necessity of T0-separability for existence of a CBRIR just
starting at the assumption of such a CBRIR (or FPR). Instead, he simply
could have used (proved)

Theorem 2. If (A, T ) is a semiorder, A is T0-separable iff (F1) holds.

3.3 Results on other kinds of representations.

Besides C(B)RIRs, Fishburn ([8, 9, Sec. 7.5]) considered representations by
arbitrary (bounded) real intervals (arbitrary (bounded) real IRs, ARIRs/
ABRIRs). In some contexts, we shall write RIR for real interval represen-
tation in place of ARIR.

Fishburn only found that his (F1) is a sufficient condition for their exis-
tence. That it is not necessary becomes obvious by taking (A, T ) to be the
“self-representing” natural interval order made up by the set of all (bounded)
real intervals, where (F1) is not satisfied.20 Note that a set D ⊆ A according
to the definition of IT -separability (which is required by (F1)) must contain
an element of at least one of two “neighbouring” IT -equivalence classes. By
contrast, in the previous example each real serves as a boundary contained
in intervals of one IT -equivalence class as well as a boundary not contained
by the elements of another IT -equivalence class. So there are uncountably
many “jumps” of IT -equivalence classes, and a D according to the definition
of IT -separability cannot exist. Dually, of course, neither is the A specified
above TI-separable.

However, if (in the same example still) we restrict consideraration to
real intervals (i) containing or (ii) not containing their lower boundaries,
IT -separability obtains (“separately”) in both cases (i) and (ii). Dually,
TI-separability obtains in both of the analogous two cases concerning up-
per boundaries. By additionally generalizing Fishburn’s notion of singular
elements, this idea turns out to be the key to solving the characterization
problem for A(B)RIRs.

20Fishburn [8] is aware that (F1) is not necessary and presents another example than is
presented here.
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The proof strategy developing in this way, furthermore, turns out to solve
another problem to be posed now. Namely, instead of representations by
closed real intervals one might prefer representations by open real intervals.
Again, one may additionally consider the restriction of boundedness, and
it is clear what ORIRs and OBRIRs are meant to be now. Just in order
to complete the picture, one may additionally consider weak function pair
representations (WFPRs), defined as pairs (u, v) of maps u, v : A→ R such
that

a T b iff v(a) ≤ u(b)

(now u < v follows)—although it is clear from the start what is to be said
about them.

Doignon et al. [6, Prop. 8] already considered the problem of which
interval orders have O(B)RIRs. They characterized such interval orders by
the condition

(D2) there be a countable D ⊆ A such that for all (a, b) ∈ ≺∼T there is some
d ∈ D such that a ≺∼T d ≺∼TI b or a ≺∼IT d ≺∼T b.

We find another solution of the same problem in quite different terms.21

The generalizations announced above are the following.22 Call an el-
ement a of A lower-singular if { b | a I b } has a TI-minimum. (If a is
singular in Fishburn’s sense, a is such a TI-minimum itself.) Dually, call a
upper-singular if the same set has an IT -maximum. (Again, if a is singular
in Fishburn’s sense, a is such an IT -maximum itself.)

Thus, singular elements are both lower- and upper-singular; the converse
does not hold: the element c in the above diagram is a counter-example. If
(A, T ) is finite, all a ∈ A are both lower- and upper-singular. (Subsection 3.6
provides a further elucidation still before diving into proofs.)

Let S− be the set of lower-singular, S+ be the set of upper-singular
elements of A. We shall find:

Theorem 3. S− is IT -separable iff S+ is TI-separable.

In this case we shall call (A, T ) singular-separable.

Theorem 4. There are only countably many IT -equivalence classes con-
taining lower-singular elements iff there are only countably many TI-equiv-
alence classes containing upper-singular elements.

21Indeed, the author considered and solved the problem without knowing of [6]. He was
lead to the problem by Peter Schuster’s (member of the Mathematical Institute at Munich
University) suggestion.

22There is a precursor to these generalizations in Fishburn’s proof of his characterization
of interval orders having CBRIRs—cf. Fn. 35 and Proposition 1 below. Moreover, they
appear in disguise in his proof that (F1) implies existence of an ABRIR.
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In this case we shall call (A, T ) singular-countable. Again, mentioning equiv-
alence classes may be avoided by stating the condition equivalently as every
subset of S− linearly ordered by IT be countable or as every subset of S+

linearly ordered by TI be countable.
We call (A, T ) regular-separable if A \ S− is IT -separable and A \ S+ is

TI-separable.23

The terms thus explained allow the following solutions of the character-
ization problems introduced before. Theorem 5 is meant to be the main
result of the paper.

Theorem 5. The following conditions are equivalent.24

(i) (A, T ) has an ABRIR;

(ii) (A, T ) has an ARIR;

(iii) (A, T ) is singular- and regular-separable.

Theorem 6. The following conditions are equivalent.25

(i) (A, T ) has an OBRIR;

(ii) (A, T ) has an ORIR;

(iii) (A, T ) has a WFPR;

(iv) (A, T ) is singular-countable and regular-separable;

(v) (D2) holds.

Finally, as announced at the end of Subsection 3.1, the new singularity
notions allow confining the countability condition (F2) occuring in Condi-
tion (iv) of Theorem 1 to an (in general proper) subset of the set of equiva-
lence classes that (F2) is about in the following way.

Theorem 7. Each of the conditions of Theorem 1 is equivalent to the con-
junction of (F1) with

(G) there be only countably many TI-equivalence classes which contain no
upper-singular element and for whose elements a the set of b such that
a T b has some IT -minimum, but no lower-singular one.26

23The intervals of the lexicographic order on R×N refute the conjecture that the two
defining conditions might be equivalent by analogy to the case of singular-separability.

24To elucidate the second remark after Theorem 1, the equivalence even holds with
assuming that (A, T ) be an interval order only in (iii).

25Again, the equivalence holds with assuming that (A, T ) be an interval order only in
(iv) and (v).

26Since, as noted above, a singular element is both lower- and upper-singular, a set
containing no lower- or no upper-singular element is a set containing no singular element—
therefore the set of equivalence classes mentioned here is a subset of that mentioned in
(F2), indeed.
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By analogy to Subsection 3.1, (G) could equivalently be worded thus: Every
subset of A which is linearly ordered by TI, which contains no upper-singular
element, and for every element c of which the set of a such that c T a has
some IT -minimum, but no lower-singular one, be countable.

Theorem 7 is meant to show that our singularity notions are somewhat
more fundamental than Fishburn’s singularity notion: Our notions tie (F2)
to a(n in general) smaller set; more generally, they help to solve the same
problems as Fishburn’s notion as well as new problems.

3.4 Conditions (F1) etc.

The “relative position” of (F1) with respect to Condition (iii) of Theorem 5
and to Condition (iv) of Theorem 6 is the following.

Theorem 8. Of the following conditions, each implies the next one without
itself being implied by it.

(i) (A, T ) is singular-countable and regular-separable;

(ii) (F1) holds;

(iii) (A, T ) is singular- and regular-separable.

By Theorem 5, this—or rather our proof of it—yields another insight into
Fishburn’s result that (F1) is sufficient for the existence of an A(B)RIR.
Another immediate consequence is

Corollary 1. Each of the conditions of Theorem 6 implies each of the con-
ditions of Theorem 5—but not conversely.27

3.5 Real homomorphisms, “exact” representations.

This subsection provides at least one definition of vital importance and
prepares some generalizations of some of Fishburn’s [8, 9] results. It is
concerned with representing IT and TI in some strict manner by RIRs.

We say that ϕ is a (strong) real R-homomorphism on X if it maps X
into R and R is some binary relation such that for all x, y ∈ X

x R y iff ϕ(x) < ϕ(y).

For the sequel one might particularly keep in mind that a real R-homomor-
phism on X maps x, y ∈ X to the same real iff x ∼R y.

Furthermore, if (Q,L) is a linear order and H,H ′ ∈ I(Q,L), then H
(L-)exceeds H ′ below if p L q for some p ∈ H and all q ∈ H ′. Call an IR

27The implications, of course, follow directly from the fact that singular-countability
implies singular-separability or, therefore, that Condition (iv) of Theorem 6 implies Con-
dition (iii) of Theorem 5. Only that the converses do not hold needs Theorem 8.
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ρ of (A, T ) in (Q,L) lower-exact if, for a, b ∈ A, ρ(a) exceeding ρ(b) below
implies a IT b.28

Dually, H (L-)exceeds H ′ above if q L p for some p ∈ H and all q ∈ H ′.
Call an IR ρ of (A, T ) in (Q,L) upper-exact if, for a, b ∈ A, ρ(a) exceeding
ρ(b) above implies b TI a.29

Call ρ exact if it is both lower- and upper-exact.
An exact IR of (A, T ) maps a, b ∈ A to the same interval iff a, b are

both IT - and TI-equivalent30 (whereas this equivalence does not suffice for
exactness). As another elucidation, if an IR of (A, T ) in (Q,L) is exact,
it is a “strong” homomorphism of (A, IT ) and of (A, TI) to the respective
structures derived from the natural interval order of (Q,L).31 The converse
does not hold.

The proof of [9, Thm. 2.6] shows that every interval order has an exact
IR. Readers acquaintant with the matter will know a number of IRs without
ever having thought of a non-exact one. A CRIR or ORIR ρ is lower-
exact iff inf ρ(a) = inf ρ(b) whenever a ∼IT b, etc. Concerning existence
of exact CRIRs, Fishburn [8, 9] told everything. We extend his theorem in
Subsection 3.6 and thus postpone the matter. Fishburn did not deal with
exactness in the case of ARIRs. We shall do in the same Subsection 3.6. At
this place, we just mention what concerns ORIRs:

Corollary 2. The following conditions are equivalent.32

(i) (A, T ) has an ORIR;

(ii) (A, T ) has an exact OBRIR;

(iii) (A, T ) has a WFPR (u, v) such that u is a real IT -homomorphism on
A and v is a real TI-homomorphism on A.

3.6 Representing singularity.

Fishburn ([8, Thm.s 2, 5] [9, Thm.s 7.6, 7.10]) found that, if a CBRIR
exists,33 then there is an exact one which maps each singular element of
A to a singleton; and if an ABRIR exists, then there is one which maps
each singular element of A to a singleton (nothing said about exactness).

28By Lemma 2 below, the converse implication holds anyway.
29Again by Lemma 2 below, the converse implication holds anyway.
30This may be considered an aspect of “minimality” according to Section 1: If ρ is exact

and, e.g., a ∼IT , then ρ(b) does not need “additional” points below ρ(a).
31To be precise, let !L! be as defined in Fn. 8. An exact IR of (A, T ) in (Q,L),

then, is a strong homomorphism from (A, IT ) to (I(Q,L),∼!L! !L!) and from (A, TI)
to (I(Q,L), !L!∼!L!).

32According to the second remark after Theorem 1, the equivalence holds without as-
suming that (A, T ) be an interval order.

33For exegetical doubts cf. Fn. 18, for their irrelevance cf. Theorem 1.
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These results can be extended to lower- and upper-singularity, to ORIRs
and concerning exactness as follows.

It is easy to see that, for a, b ∈ A, b is an IT -maximum of { c | a I c } iff
a is a TI-minimum of { c | b I c }.34 Define a I* b to hold then.35 a then is a
“witness” for b being lower-singular, and, dually, b is a “witness” for a being
upper-singular.36 (Now a is singular in Fishburn’s [8] sense iff a I* a.)37

Call an IR ρ of (A, T ) in some linear order (Q,L) singular-exact if, (ex-
actly)38 for (a, b) ∈ I*, ρ(a) and ρ(b) have exactly one element in common.39

Our announced extensions then are:

Corollary 3. The following conditions are equivalent.40

(i) (A, T ) has a CRIR;

(ii) (A, T ) has an exact and singular-exact CBRIR;

(iii) (A, T ) has a FPR (u, v) such that u is a real IT -homomorphism on A,
v is a real TI-homomorphism on A, and u(b) = v(a) iff a I* b.

We could have dealt with exactness and singular-exactness separately to tell
more (cf. Corollary 2 above). This is done in Section 5.

Corollary 4. (A, T ) has an ARIR iff it has an exact and singular-exact
ABRIR.41

In contrast, exact and singular-exact O(B)RIRs exist trivially, if at all:

Corollary 5. If (A, T ) has an ORIR, the following conditions are equiva-
lent.42

(i) (A, T ) has a(n exact and) singular-exact O(B)RIR;43

(ii) S− = ∅;

(iii) S+ = ∅.
34Cf. Proposition 1 in Subsection 4.5.
35I \ (I* ∪ (I*)−1) is what Fishburn calls I in [8, (10)] and [9, p. 137].
36See Proposition 1 again.
37See Lemma 5.
38If ρ is any IR, ρ(a) ∩ ρ(b) is no singleton if not a I* b. This follows from Lemma 2

below.
39This quite obviously deserves to be called a “minimality” condition.
40Again, the equivalence holds without assuming that (A, T ) be an interval order.
41Again, the equivalence holds without assuming that (A, T ) be an interval order.
42The second remark after Theorem 1 makes no difference here, since existence of an

ORIR implies that (A, T ) is an interval order, anyway.
43There is no interesting WFPR version analogous to the FPR version in Corollary 3.
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The parentheses are meant to indicate that singular-exactness is the prob-
lem, not exactness or boundedness.

In fact, Fishburn’s and our proofs of representability claims show that
(A, T ) has some exact and singular-exact CIR as well as some exact and
singular-exact AIR in any case (it will be clear what these abbreviations
and the following one are to be meant for “abstract” IRs); and that it has
some singular exact OIR iff S− = ∅ or, equivalently, S+ = ∅.44

3.7 Extending Fishburn’s results on semiorders.

In [8, p. 97], Fishburn defines a RIR ρ (of (A, T )) to be monotonic if
inf ρ(a) < inf ρ(b) and sup ρ(a) > sup ρ(b) for no a, b(∈ A). He then states
two theorems on existence of such RIRs for semiorders.45 For ARIRs, how-
ever, there seems to be a more adequate notion: Call an IR ρ of (A, T )
in some linear order (Q,L) semiorderlike if ρ(a) L-exceeds ρ(b) below and
above for no a, b ∈ A. Now, monotonicity and semiorderlikeness are the
same for CRIRs as well as for ORIRs, whereas for ARIRs semiorderlikeness
only implies monotonicity—the converse not holding.

Rather obviously:

Corollary 6. Any exact RIR of (A, T ) is semiorderlike (and, hence, mono-
tonic) iff (A, T ) is a semiorder.46

Since in all his proofs of theorems mentioned so far, Fishburn presents ex-
act RIRs, Corollary 6 (or its proof) is suggested to be an alternative to
Fishburn’s proofs of his theorems on monotonicity.

Moreover, Fishburn’s results might be extended in various ways accord-
ing to the two previous subsections, e.g.:

Corollary 7. In corollaries 2 through 5, ‘exact’ may be replaced by ‘exact
and semiorderlike’ iff (A, T ) is a semiorder.

To summarize: Closed/open/arbitrary representability implies exact repre-
sentability of the respective kind; and in case of semiorders, it implies re-
spective semiorderlike (a fortiori: monotonic) representability. The slogans
are: Exactness is no problem; and for semiorders, semiorderlikeness (mono-
tonicity) is no problem.

Furthermore, Fishburn [8, p. 97] defines a RIR ρ to be strictly monotonic
if, for all a, b ∈ A, inf ρ(a) < inf ρ(b) iff sup ρ(a) < sup ρ(b). He states that

44In the present paper, we omit a third kind of “exactness” (“minimality”): An IR ρ
might be required to meet that, if a T* b, then ρ(a), ρ(b) should be “as tight as possible”
(unless a /∈ S+, b /∈ S−; ρ(a)∩ ρ(b) interval [but for one point]). Our proof of existence of
an ARIR, however, shows existence of an ARIR meeting all three kinds of “exactness”.

45His [9, Sec.s 7.5f.] essentially states the same theorems without explicitly introducing
the notion of monotonic RIRs.

46Again, the equivalence holds without assuming that (A, T ) be an interval order.
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a strictly monotonic CRIR exists where any CRIR exists, but confesses to
have been unable to decide the case of ARIRs. Indeed, for ARIRs the
question may be somewhat ill-posed, since, again, a perhaps more adequate
notion presents itself: Call an IR ρ of (A, T ) in some linear order (Q,L)
strictly semiorderlike if, for any a, b ∈ A, ρ(a) L-exceeds ρ(b) below iff
ρ(b) L-exceeds ρ(a) above. Now like above, strict monotonicity and strict
semiorderlikeness are the same for CRIRs as well as for ORIRs, whereas for
ARIRs strict semiorderlikeness only implies monotonicity—the converse not
holding.47

In the present paper at least, we refuse to extend Fishburn’s theorem
concerning this notion.48 Besides a space-time reason, there is a moral
reason:

Corollary 8. Assume (A, T ) is a semiorder having an exact RIR ρ. Then
ρ is strictly semiorderlike iff IT = TI.

(This does not hold for strict monotonicity in place of strict semiorderlike-
ness.) We deem exactness a very high virtue; therefore, we consider a strictly
monotonic RIR ρ of (A, T ) “cheating” unless IT = TI. On the other hand,
if IT = TI, (since exactness is granted by earlier results) strict monotonic-
ity deserves no particular attention. Furthermore, the method of creating
IRs used in the present paper only yields exact IRs (cf. Corollary 8) and
is not as apt to create “extra points” needed for strict semiorderlikeness as
Fishburn’s is.49

Nevertheless, in contrast to the case of strict monotonicity, we are able to
decide whether existence of a RIR entails existence of a strictly semiorderlike
one:

Theorem 9. The natural interval order of all real intervals having length 1
and containing their lower boundaries is a semiorder having its identity as
a (strictly monotonic!) RIR but having no strictly semiorderlike RIR.

3.8 Empirical significance?

Our results on ARIRs may be of mathematical value only. Empirical mean-
ing of real intervals representing two alternatives or experimental stimuli and
differing just in one or two real numbers may be difficult to explicate. To
make things worse, the results are of no value when A is finite. Otherwise,
however, it seems difficult to imagine an economic or psychological theory

47Cf. Theorem 9.
48[9, Thm. 7.8] states the same theorem without explicitly introducing the notion.
49However, we believe that Fishburn’s [8, Thm. 10]=[9, Thm. 7.8] can be extended to

ARIRs and ORIRs in the way one would expect. The proof would require quite a complex
modification of Fishburn’s respective construction of a weak order on a “doubled” version
of A, taking into account lower- and upper-singularity in a similar way as in our suffiency
proofs. We withhold this for reasons indicated above.
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concerning an infinite set of possible alternatives or stimuli not bearing some
topology relatively to which borders of real intervals change continuously
(cf. Subsection 3.1). With respect to this, ARIRs are strange, while ORIRs
(WFPRs) might be comparable to CRIRs (FPRs) (to be investigated).

3.9 Where are the proofs?

This subsection guides from previous claims—in the order of their appear-
ance above—to the places below where they are treated.

Some remarks or clarifications on Theorem 1 are presented in sections 5
and 6. Theorem 2 is proved in Subsection 6.5. Theorems 3 and 4 are proved
in Subsection 6.4.

Necessity of representability conditions in theorems 5 and 6 is proved in
Section 7. Sufficiency of the same conditions is proved in Subsection 8.5 for
Theorem 5 and in Subsection 8.6 for Theorem 6. Concerning (D1) and (D2),
we are just reporting [6] without presenting own proofs.50 Boundedness in
both theorems and Condition (iii) of the latter are dealt with in Section 5.

Theorem 7 is proved in Subsection 6.6, Theorem 8 in Subsection 6.5.
Corollary 1, told to be immediate from the latter theorem, needs nothing
more.

Section 5 deals with corollaries 2 and 3. Besides, corollaries 2 through 4
need respective theorems 6, 1, and 5 as well as respective subsections 8.6,
8.2, and 8.5. Corollary 5 needs Corollary 2 and Section 7.

Claims of Subsection 3.7 are treated in Section 9.
The text has been arranged to make each of sections 6–8 work as if the

other two were not present. By contrast, most of Section 4 will be needed
for each of those sections.

4 Additional general preliminaries.

4.1 Further conventions concerning binary relations.

If R ⊆ X ×X ′ (and the context exhibits no such sets larger than X,X ′), to
allow succinct notations we just write Rx′ instead of {x ∈ X | x R x′ } and,
dually, xR instead of {x′ ∈ X ′ | x R x′ }.

We say that some binary relation R ( ⊆ X ×X, say) has some property
on a set Y (normally, Y ⊆ X) if R ∩ (Y × Y ) has that property. Examples
will be presented in Subsection 4.2.

R-MinY will denote the set of R-minima of Y . For asymmetric R—to
which we shall apply the notation exclusively—these are elements x of Y
such that y R x for no y ∈ Y , or equivalently, such that x ≺∼R y for all
y ∈ Y . Dually, R-MaxY will be the set of R-maxima of Y .

50Theorem 6 could have been proved using the result of [6] by easily showing “directly”,
i.e., just in terms of interval orders, equivalence of Condition (iv) with (D2).
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4.2 Weak orders, their quotients, and representability.

A binary relation R (strictly) weakly orders some set X—and (X,R) will
then be called a weak order—, if R is asymmetric on X and ≺∼R is transitive
on X. The latter condition is called negative transitivity of R.51 Recall from
Subsection 2.1 that, for R weakly ordering X (as well as for any asymmetric
binary relation R), x ≺∼R y iff not y R x as well as iff x (R ∪ ∼R) y. It follows
that ∼R is transitive on X (since at least ∼R ⊆ ≺∼R∩≺∼

−1
R ) and that, since ∼R

is reflexive and symmetric from the start by its definition and by asymmetry
of R, ∼R is an equivalence relation on X.52

We denote the corresponding equivalence class that x ∈ X belongs to
by [x]R. We even shall call it an ‘R-equivalence class’ (as we did in (F2)
already). For Y ⊆ X, Y/R will be { [x]R | x ∈ Y }.53 Moreover, according
to the ensuing Lemma 1, a relation R/Y on Y/R is well defined by the
condition

[x]R R/Y [y]R iff x R y (x, y ∈ X).

Lemma 1. Assume R ⊆ X × X weakly orders X. Then RR ⊆ R (R is
transitive); R≺∼R ⊆ R; and ≺∼RR ⊆ R.

This may be considered “folklore”; though, we briefly present a proof.54

Proof. If x R y ≺∼R z, negative transitivity implies x ≺∼R z. For R≺∼R ⊆ R,
it remains to show that not x ∼R z. But x ∼R z would imply y ≺∼R z ≺∼R x
and, by negative transitivity, y ≺∼R x, which would (by asymmetry) contradict the
assumption x R y.

This yields R≺∼R ⊆ R, and dually obtains ≺∼RR ⊆ R.
Finally, x R y R z (transitivity, i.e.) is a special case of x R y ≺∼R z (or of

x ≺∼R y R z—as you like).

It may be helpful to notice that (X/R,R/X) is a linear order (if R
weakly orders X).55 A linear order (Q,L) may be viewed as a “reduced”
weak order in the sense that L-equivalence classes contain just one element.56

Conversely, weak orders might be viewed as “redundant” linear orders the
equivalence classes of which are occupied by a plurality of elements.—This
theme will be continued under the label of ‘congruency’.

51In this case, namely, the “negation” of R is transitive.
52In fact, if R′ is any asymmetric binary relation, ∼R′ being transitive and being an

equivalence relation are equivalent.
53To be sure,

⋃
(Y/R) is, in general, no subset of Y .

54We are presenting proofs of “trivia”, which may appear superfluous to some readers
but be helpful for others, in small type.

55For deep enlightenment cf. Fishburn’s [9, Thm. 1.2], but note that his notation is not
as precise as ours.

56Compare categories where each object is isomorphic to itself only.
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In proving Theorems 5f., we shall, like Fishburn [8, 9], use the “Cantor
route”,57 or better: the “Birkhoff/Milgram route”58 to real representability:

Real Homomorphism Theorem. There is a (strong) real R-homomor-
phism on X iff R weakly orders X such that X is R-separable.

This theorem is proved in [7, Thm. 3.1] as well as in [11] or in [17, Sub-
sec. 3.1.4].59 Concerning the “range of applicability” of the separability
notion involved (mentioned in Subsection 2.1 above), the equivalences of
definitions according to [3, 1.4.3.f.] are proved there for weak orders (X,R),
indeed.

4.3 How interval representations handle I, IT , and TI.

The following lemma is an easy consequence of the definitions of I, IT , TI,
IRs, and intervals.60 We leave the proof to the reader.

Lemma 2. Assume ρ is an IR of (A, T ) in a linear order (Q,L) and a, b ∈ A.
Then ρ(a)∩ ρ(b) 6= ∅ iff a I b;61 if a IT b, then ρ(a) exceeds ρ(b) below; and
if a TI b, then ρ(b) exceeds ρ(a) above.62

4.4 Vital features of T , I, IT , and TI.

The ensuing has been presupposed several times earlier in this paper. It is
well-known at least since [7] (or see [9, pp. 21f.]).63

Lemma 3. IT and TI weakly order A.

Though, we present another proof in order to fit the present framework and
some needs of later proofs.

In advance we gather, for reference, some other easy observations.
57Fishburn—[8, p. 93], [9, p. 133]—attributes the following theorem ‘essentially’ to

Cantor’s 1895 [4]—cf. [5]. However, there is a trick in proving the necessity of the following
representability condition which cannot be seen from this theorem of Cantor’s and neither
from its proof. Moreover, a problem with the sufficiency part is that Cantor’s [4] original
theorem uses a separability notion that is strictly stronger than the separability notion
used in the “Real Homomorphism Theorem”—cf. the modern, more clearly purely order-
theoretic version of Cantor’s [4] theorem in [3, 1.5.8] and [3, 1.4.3, 1.4.5].

58To continue the previous footnote: according to [17, Subsec. 3.1.4] and [10], the en-
suing theorem should better be attributed to G. Birkhoff and A. Milgram.

59Also cf. [3, Thm. 1.4.8].
60A rigorous proof, however straightforward, would need some lines and cases.
61Here, convexity and non-voidness of intervals are essential.
62Recall the definitions of Subsection 3.5.
63It must have been known to B. Russell according to [18] already, where irreflexivity

and transitivity of T and transitivity of IT are assumed, which is another way of defining
interval orders.
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Lemma 4. T is irreflexive and

(W) TIT ⊆ T.64

I is irreflexive; T is transitive and asymmetric; and the following hold:

T ⊆ IT ∩ TI;(1)
∼IT ∪ ∼TI ⊆ I.(2)

Proof. Irreflexivity of T and (W) follow from “abstract” interval representability
of (A, T ) as fixed in Subsection 2.2. E.g., if ρ is an IR and a T c I d T b, ρ(c)∩ρ(d)
has (by Lemma 2) an element which “tops” all members of ρ(a) and “is topped” by
each member of ρ(b), etc.65—Irreflexivity of T implies reflexivity of I by definition
of the latter. Therefore, a I a T b and a T b I b, if a T b; which proves (1).
The latter yields (2) and, by (W), TT ⊆ TIT ⊆ T—so T is transitive and, by
irreflexivity, asymmetric.

Proof of Lemma 3. IT and TI are irreflexive by definition of I. (W) implies
ITIT ⊆ IT and TITI ⊆ TI, which say that IT and TI are transitive; thus,
they are asymmetric, and ≺∼IT ,≺∼TI are their respective “reverse negations”.

The definitions of IT and TI, therefore, imply the equivalences

a ≺∼IT b iff Ta ⊆ Tb;(3)
a ≺∼TI b iff bT ⊆ aT.(4)

(3), e.g., obtains thus by contraposition: If b I c T a, then c ∈ Ta \ Tb. If,
conversely, c ∈ Ta\Tb, then either c I b, implying b IT a, or b T c, which by
transitivity of T (Lemma 4) yields b I b T a.—(3) and (4) yield transitivity
of ≺∼IT and ≺∼TI .

Now, asymmetry of IT and TI together with (1) adds

(IT ∪ TI) ∩ T−1 = ∅.(5)

4.5 I*, singularity, and regularity.

This subsection exhibits easy proofs of incidental claims in Subsection 3.6
plus something more needed later on.

64In fact, these two conditions were used by N. Wiener [21] to define what is nowadays
called ‘interval orders’. Nowadays, irreflexivity of T and if a T b and c T d, then a T d
or c T b are common to define the same notion. It is the same notion, indeed: Assuming
b I c, the ‘common’ condition immediately yields (W). If you start at (W) and irreflexivity,
x T y I y T z yields transitivity of T , so assuming not c T b, the above ‘common’ condition
follows from transitiviy in the case of b T c and immediately from (W) in the case of b I c.

65All of the following is visually clear using ρ—cf. Lemma 2; though we do without to
achieve some formal rigour at the cost of relatively little space.
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Proposition 1. b ∈ IT -Max Ia iff a ∈ TI-Min Ib. So b ∈ S− iff I*b 6= ∅;
and a ∈ S+ iff aI* 6= ∅. Moreover, S− = ∅ iff S+ = ∅.

The first sentence justifies our definition of I*.

Proof. By duality, proof of ‘only if’ suffices for the first sentence. For reductio,
assume b ∈ IT -Max Ia and a /∈ TI-Min Ib. The second assumption implies exis-
tence of c, d such that b I c T d I a, so b IT d I a. But this contradicts the first
assumption, since the latter entails b I a.

The second sentence immediately follows from the definitions and straightfor-
wardly implies the third one.

Lemma 5. a ∈ S iff a I* a; so S ⊆ S− ∪ S+.

Proof. For the first statement, we show its contraposition. If not a I* a, there are
b, c such that a I b T c I a. Hence not b I c, so a /∈ S.—If a /∈ S, there are b, c ∈ Ia
such that not b I c. Without loss of generality b T c. Then a I b T c I a, so—by
any one of the two definitions of I* in Subsection 3.6—not a I* a.

Now the second statement obtains by Proposition 1.

So far, regularity has been defined “by negation” (via lower-/upper-
singularity) only. Here is a “positive” characterizing66 feature.

Lemma 6. If a IT b and a /∈ S−, there is an infinite IT -chain in a(IT ) ∩
(IT )b. Dually, if a TI b and b /∈ S+ there is an infinite TI-chain in a(TI) ∩
(TI)b.67

Proof. a IT b means that there is some c0 ∈ aI ∩ Tb. If a /∈ S−, no cn ∈ aI ∩ Tb
is a TI-minimum of aI, so there is some cn+1 such that a I cn+1 TI cn. By (W),
this yields cn+1 ∈ Tb. Moreover, there is some dn ∈ A such that cn+1 T dn I cn.

To conclude, there are infinite sequences (cn) and (dn) such that

a I cn+2 T dn+1 I cn+1 T dn I cn T b

for any n ∈ N. The quintessence of this formula is a IT dn+1 IT dn IT b, which
meets the first claim concerning some infinite sequence (dn) in A.

We need not carry out the dual matter.

4.6 Congruency—exemplified.

If (X,R) is a weak order, a subset Y of X will be called R-congruent if it
is a union of R-equivalence classes. This is the same as being “closed” with
respect to R-equivalence.68 Some examples needed below are the following.

66Lemma 6 claims one direction of each characterization only; the proof of the converse
direction is easy to see at least from the proof presented.

67Actual infinity will never be used; we claim and prove it for narcissistic reasons only.
68I.e., Y is R-congruent iff x ∼R y ∈ Y implies x ∈ Y .
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Lemma 7. In the same situation, xR and Rx are R-congruent for each
x ∈ X. For a ∈ A, aT and Ia ∩ a≺∼IT are IT -congruent, while Ta and
Ia ∩ ≺∼TIa are TI-congruent.

Seemingly everything about weak orders lies clearly visible to the mathe-
matical inner eye. Though, some indications to “formal” proofs might be
appropriate.

Proof. If x R y′ ∼R y, then x R y by Lemma 1.
a T b′ ∼IT b implies Tb′ ⊆ Tb by (3) and, therefore, a T b.
Now assume a (I ∩ ≺∼IT ) b′ ∼IT b. Then, negative transitivity of IT (Lemma 3)

yields a ≺∼IT b. a I b remains to be proved. For reductio, assume a T b or b T a. In
the first case, (3) yields a T b′; while in the second case, (3) yields the b′ T a—both
contradicting the assumption a I b′.

The remaining proofs are duals of the former ones, using (4) where (A, T ) is
concerned.

An obvious, though eventually vital feature of congruent sets is

Lemma 8. If (X,R) is a weak order and Y ⊆ X is R-congruent and non-
void, R-MinY as well as R-MaxY is one R-equivalence class, if not void.

If we have R ⊆ X ′ ×X ′′, R′ ⊆ X ′ ×X ′ such that R′ weakly orders X ′,
and R′′ ⊆ X ′′ ×X ′′ such that R′′ weakly orders X ′′, then we shall call R a
strong R′-R′′-congruence if both of the following conditions are satisfied.

(C1) For all x′, y′ ∈ X ′ and x′′, y′′ ∈ X ′′ such that x′ R x′′ and y′ R y′′

x′ R′ y′ iff x′′ R′′ y′′;

(C2) ∼R′R∼R′′ ⊆ R.

Thus, if R is a map X ′ → X ′′, (C1) just means that R is a (“strong”)
(cf. Subsection 2.2) homomorphism respecting R′ and reflecting R′′; con-
versely, (C1) generalizes the latter notion from maps to arbitrary binary
relations. (C2) tells that R treats R′-equivalent elements the same way, as
well as R′′-equivalent elements.69

(C2) follows from the conjunction of ∼R′R ⊆ R and R∼R′′ ⊆ R. In
proofs, we shall only consider the first part, for the proof of the other one
will go dually.

As a particular feature of such relations easily obtains

Lemma 9. Assume the above situation (so (X ′, R′) and (X ′′, R′′) are weak
orders and R is a strong R′-R′′-congruence). Then for each x′ ∈ X ′, x′R is
an R′′-equivalence class if not void, and x′R = y′R if x′ ∼R′ y′; dually for
each x′′ ∈ X ′′, Rx′′ is an R′-equivalence class if not void, and Rx′′ = Ry′′ if
x′′ ∼R′′ y′′.

69Of course, identity is implied by the inclusion statement of (C2), since the indifference
relations are reflexive.
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Proof. If x′ R x′′ and x′ R y′′, then x′ ∼R′ x′ and (C1) imply x′′ ∼R′′ y′′; so
x′R is at most one R′′-equivalence class. By (C2), x′R is, if non-void, at least one
R′′-equivalence class. Again by (C1), it is the same as y′R if neither x′R nor y′R
is void and if x′ ∼R y′. But if one is not void, by (C2) neither is the other. Dual
reasonings yield what remains.

Thus, if in particular X ′ = X ′′ and R′ = R′′, R induces a relation R/R′ on
X ′/R′ well-defined by the condition

[x]R′ R/R′ [y]R′ iff x R y (x, y ∈ X ′).

An example for use of this notation will appear in Subsection 4.7.
Another example for strong congruency is I* (introduced in Subsec-

tion 3.6 and reconsidered in Subsection 4.5).

Lemma 10. I* is a strong TI-IT -congruence.

Proof. For (C1), assume a I* b and a′ I* b′.
If a TI a′, there is c such that a T c I a′; therefore b I a T c. On the other

hand, c I a′ I* b′ implies c ≺∼IT b′. Putting these consequences together yields
b IT c ≺∼IT b

′. Since IT weakly orders A (Lemma 3), Lemma 1 yields b IT b′.
The converse is proved dually using the dual version of the definition of I*.
For (C2), conclude a′ ∈ TI-Min Ib = TI-Min(Ib ∩ ≺∼TI b) from a ∼TI a′ I* b

to get a I* b by lemmas 7f.

As a consequence, we get another example of congruency of sets.

Lemma 11. S− is TI-congruent; dually, S+ is IT -congruent.

Proof. For the first of the dual parts assume a ∈ S− and a ∼TI b. By
lemmas 9 and 10, then, I*a = I*b. Therefore b ∈ S−, as well.

As a further example of strong congruency we define a relation T* on A
by

T*:= T \ TIT.
This is how Fishburn [8, p. 95] started to present his version of Condi-
tion (F2). Note that, by (W), a T* b iff a ∈ TI-MaxTb and iff b ∈
IT -Min aT .70 So if (A, T ) is natural (Subsection 2.2), a T* b means that
a, b “touch” each other in the sense that a is one of the most close intervals
below b and—equivalently—that b is one of the most close intervals above
a.

Now we continue the previous findings by

Lemma 12. T* is a strong TI-IT -congruence.

Proof. For (C1), assume a T* b and a′ T* b′. If a TI a′, there is c such that
a T c I a′. By a T* b, this implies b ≺∼IT c; while by a′ T* b′ (and T* ⊆ T ), it
implies c IT b′. By Lemma 1 both consequences together yield b IT b′. (Conversely
dually.)

(C2) obtains, similarly to the above, by reading a′ T* b as a′ ∈ TI-MaxTb and
from lemmas 7f.

70[20, p. 59, (19)] seems to overlook that the latter two propositions are equivalent.
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4.7 “Neighbourhood”, “jumps”, and regularity.

For any R weakly ordering some set X, we define an associated relation

NR := R \RR.71

x NR y means that x and y are immediate R-neighbours (in “direction”
x R y, to be precise), and might have been defined equivalently by x ∈
R-MaxRy or by y ∈ R-MinxR.

Lemma 13. In the situation just depicted, NR is a strong R-R-congruence.

Proof. For (C1), assume x′ NR x′′ and y′ NR y′′. If x′ R y′, then x′′ ≺∼R y′ by
x′′ ∈ R-Minx′R; and Lemma 1 using NR ⊆ R yields x′′ R y′′. The converse is
proved dually by using y′ ∈ R-MaxRy′′.

For (C2), interpret a ∼R a′ NR b as a ∼R a′ ∈ R-MaxRb. a NR b then obtains
by lemmas 7f.

We call each element of NR/R an R-jump of X. By the above “Real
Homomorphism Theorem”, representability of (X,R) by a “utility function”
requires that there are only countably many R-jumps of X—cf. Lemma 15
below.

The following concerns regularity.

Lemma 14. If a ∈ A \ S−, then aNIT = ∅.

Proof. Assume a /∈ S− and, for reductio, a NIT b for some b ∈ A. This yields
a IT b. By Lemma 6 and the first assumption, there is some c ∈ A such that
a IT c IT b, contradicting the second assumption.

4.8 Miscellanea on separability.

We insert a step into the definition of separability, a step we omitted in
Subsection 2.1. If R is some binary relation on a set X, a set D will be
called R-dense in X if D ⊆ X and if for all x, y ∈ X such that x R y there
is d ∈ D such that x ≺∼R d ≺∼R y. Thus, X is R-separable iff there is a
countable set that is R-dense in X. We are now in a position to state, for
reference, the obvious

Lemma 15. Let R weakly order X and D be R-dense in X. Then, for
every R-jump (B,C) of X, (B ∪ C) ∩ D is non-void. If X is R-separable,
therefore, it has only countably many R-jumps.

Furthermore we shall need:
71For more preciseness, the term should also specify a range, since the latter determines

“neighbourhood” of two objects as well as the relation R. (In the situation depicted,
new “neighbourhoods” of two objects my arise by removing some others between them.)
Nevertheless, we drop the range and shall indicate it by the context.
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Lemma 16. If (X,R) is a weak order such that X is R-separable, and if
Y ⊆ X, then Y is R-separable.

Proof. Assume the hypothesis. By the Real Homomorphism Theorem, then, there
is a real R-homomorphism on X. It is a real R-homomorphism on Y ⊆ X, as
well. Therefore, the Real Homomorphism Theorem entails that Y as well is R-
separable.72

5 Proofs: “Unbounded”/FP representations.

This section provides the obvious (if so: skippable) explanations

1. of the equivalences of the first two conditions in each of Theorem 1 and of
Theorems 5f., resp., (where irrelevance of the boundedness restriction for the
existence of RIRs of the repective kinds is claimed);

2. concerning the existence of WFPRs in Theorem 6;

3. concerning exactness, singular-exactness and what corresponds to them for
FPRs or WFPRs according to corollaries 2 and 3.

A CBRIR is a CRIR, an ABRIR is an ARIR, an OBRIR is an ORIR (thus
in each case, existence of a former implies existence of a latter). Concerning the
converse existence claims:

As may be recalled from trigonometry or from elementary analysis, arctan is
a strictly monotone (therefore one-to-one) map from R onto the open real interval
(−π/2, π/2).73 Now, if F is some ARIR or some ORIR of (A, T ),

a 7→ arctan[F (a)] (a ∈ A)

is an ABRIR or an OBRIR of (A, T ), respectively.74—If F is, instead, a CRIR,
we proceed essentially in the same way, but we complete arctan[F (a)] by each
of −π/2, π/2, resp., whenever one of them is “touched” by arctan[F (a)]. More
precisely, we define, for every a ∈ A, l(a) to be ∅ if F (a) is bounded; to be {π/2}
if F (a) has a lower, but no upper bound; to be {−π/2} if F (a) has an upper, but
no lower bound; finally to be {−π/2, π/2} if F (a) is unbounded in each direction.
Then

a 7→ arctan[F (a)] ∪ l(a) (a ∈ A)

is a CBRIR of (A, T ).—This completes proofs of all the earlier claims of irrelevance
of boundedness restrictions for existence of RIRs.

Next (concerning theorems 1 and 6), by analogy to Subsection 3.1, if F is an
OBRIR, u : A → R, a 7→ inf F (a) and v : A → R, a 7→ supF (a) form a WFPR;
and if (u, v) is a WFPR, a 7→ (u(a), v(a)) is an OBRIR.75 Thus, as claimed in
Theorem 6, existence of a WFPR is the same as existence of an OBRIR. The
analogous equivalence in Theorem 1 was explained in Subsection 3.1 already.

72The fact may also be proved elementarily on less than a whole page.
73It is a map inverse to one “branch” of tan = sin / cos. Of course, any other strictly

monotone map from R into a bounded real interval would do as well.
74Each real interval occurring has −π/2 as a lower and π/2 as an upper bound.
75According to widespread use, (u(a), v(a)) here denotes { r ∈ R | u(a) < r < v(a) }, of

course.
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Finally (concerning corollaries 2 and 3), it is easy to check that a CBRIR or
OBRIR is exact iff for the corresponding (according to Subsection 3.1) FPR or
WFPR (u, v), u is a real IT -homomorphism and v is a real TI-homomorphism (in
each case, one direction needs Lemma 2). It is obvious that a CBRIR is singular-
exact iff for the corresponding FPR (u, v), u(b) = v(a) iff a I* b. This proves
equivalence of the last two conditions of corollaries 2 and 3.

6 Proofs on representability conditions.

6.1 Dual conditions in general.

While R-separability is a self-dual notion for any relation R, neither (F2),
nor (E), nor (G) are (at least “syntactically”) self-dual.76 Though, in their
contexts, they may be replaced by their duals.

To make this clear, we begin by introducing some shorthand definitions.
If J is a set of real intervals, let J∗ be the image of J under multiplying
by −1 (e.g., [p, q) turns into (−q,−p]). We say ρ is a RIR of some interval
order (X,R) in some set J of real intervals if ρ is an IR of (X,R) in (R, <)
such that ρ[X] ⊆ J . By multiplying the members of the image intervals by
−1, we obtain some other map ρ∗ from X into the set of real intervals. The
dual of an interval order (X,R) is (X,R−1). Observe that ρ is a RIR of
some interval order T in some set J of real intervals iff ρ∗ is a RIR of the
dual of T in J∗. Observe, furthermore, that some interval order meets some
condition iff the dual interval order meets the dual condition.

Now we may state and prove:

Theorem 10. Let J be some set of real intervals such that J∗ ⊆ J . Let (C)
be some condition on interval orders necessary and sufficient for existence
of a RIR in J . Then the dual of (C) is necessary and sufficient for existence
of an RIR in J , too.

Proof. Assume the hypotheses, and let T be some interval order.
For necessity of the dual of (C), assume T has a RIR ρ in J . Then ρ∗ is a RIR

of the dual T ∗ of T in J∗ and, by hypothesis, in J . By the other hypothesis, T ∗
meets (C). The dual T of T ∗, therefore, meets the dual of (C).

For suffiency of the dual of (C), assume T meets the dual of (C). Then, the
dual T ∗ of T meets (C). By hypothesis, T ∗ has a RIR ρ in J . ρ∗, then, is a RIR
of T in J∗. By hypothesis, it is a RIR in J , as well.

Admittedly, this is no strict mathematical proof. Even the ‘theorem’ is too
vague (‘condition on interval orders’) to be a clear mathematical proposition.
A clear and strict mathematical version would need to introduce a formal
language and to present model-theoretical statements.

76Indeed it is, presumably, not too difficult to find interval orders where one of these
conditions holds but not its dual. I.e., the conditions are even “semantically” not self-dual.
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When we apply the ‘theorem’ to (F2), (E), and (G) (and to their duals),
however, it suffices that the previous indicates how to derive the dual of each
of them in their context. Viewing J from Theorem 10 as the set of closed
real intervals leads to the following

Corollary 9. In Theorem 1, the dual of (E)77 may be added to the list of
equivalent conditions, and (F2) may be replaced by its dual. In Theorem 7,
(G) may be replaced by its dual.

Proof. The case of (E) is straightforward. For (F2) and (G), one uses that (F1) is
self-dual.

While the latter example of Theorem 10 is related to the notion of a CRIR,
the other RIR notions introduced earlier lead to further obvious examples
of J from Theorem 10.

All the above may have been “folklore” and arises from the “symmetry”
of (R, <); i.e., (R, >) is isomorphic to (R, <).

6.2 A preliminary on (F2).

We supply a name for the set (F2) is about. S will denote the set of singular
elements of A in Fishburn’s sense. By lemmas 9 and 12, aT* = bT* if
a ∼TI b. Therefore, we are allowed to define

G0 := { [a]TI | a ∈ A; S ∩ [a]TI = ∅; aT* 6= ∅; S ∩ aT* = ∅ }.

Thus, (F2) tells G0 to be countable.78

6.3 Condition (E).

Condition (E) appears in Theorem 1 just to summarize earlier contributions, relying
on the equivalences of (F1)&(F2) with existence of a CBRIR as found by Fishburn
and of (E) with existence of a FPR as found by [15]. After Section 5, the claim of
Theorem 1 concerning (E) then follows from the obvious correspondence between
FPRs and CBRIRs depicted in Subsection 3.1.

77The dual of (E) is: there be a countable D ⊆ A such that for all (a, b) ∈ T there is
some d ∈ D such that a ≺∼TI d T b. To check that this is the dual of (E), dualize the
components a T b, a T d, and d ≺∼IT b of (E), then interchange a, b.

78Fishburn [8] originally defined an equivalence relation E on T* such that (a, b) E
(a′, b′) iff a T b′ and a′ T b. Now, this is just equivalent to a ∼TI a′: Keep in mind that
a T* b and a′ T* b′. Then a ∼TI a′ implies a T b′ and a′ T b by (4). Conversely, prove
the contraposition. If a TI a′, say a T c I a′. Then b ≺∼IT c by a T* b. Therefore, by
(3), Tb ⊆ Tc, so the assumption c I a′ excludes a′ T c and a′ T b.—Denoting the set of
equivalence classes of T* with respect to E by T*/E, countability of G′0 := {P ∈ T*/E |
P ∩ (S × A) = ∅ = P ∩ (A × S) } comes very close to how Fishburn [8] presented (F2).
But by the equivalence of the conditions noted above, P 7→ pr1[P ] is a one-to-one map
from G′0 onto G0, where pr1 denotes the projection to the first factor.

In [9], Fishburn uses another version of G0, which would need too much preparations
to be explained in the present framework.
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The previous, however, is not the whole truth. Whereas interval orders usu-
ally are considered asymmetric and therefore irreflexive, [15] deal with “weak”,
i.e., reflexive “interval orders”. Furthermore, it remains to check our claim that
Condition (E) presented here is equivalent to what in [15] is defined to be ‘i. o.-
separable’. Summarizing, it remains to check whether Subsection 3.1 presents a
correct “translation” of [15].79

These tasks are not difficult. But if we rely on Fishburn’s [8, 9] and on having
correctly reported them, we may replace such a check by a proof of the following
just in terms of (A, T ), which may be of some value on its own right.

We begin with some observations concerning singularity.

Lemma 17. If a T* b and a ∼TI c ∈ S, then c NIT b. Dually, if a T* b and
b ∼IT c ∈ S, then a NTI c.

Proof. By (2) (Lemma 4), a ∼TI c ∈ S implies a I c. By a T* b obtains c I a T b,
thus c IT b.

Now, for reductio, assume c I d′ T d IT b for some d, d′ ∈ A. By Lemma 12,
c T* b, i.e., b ∈ IT -Min cT , so not c T d. d T c is ruled out by (5) and the
assumption. We conclude c I d.

Using the assumptions about d′, we get d′ I c I d. By c ∈ S, then, obtains
d′ I d, which contradicts the assumption d′ T d. Therefore, c ITIT b does not
hold.

Lemma 18. Let c, d ∈ S. Then c ∼IT d iff c ∼TI d.

Proof. Assume c ∼IT d. (2) yields c I d. If c T a I d for some a ∈ A, then
a I d I c and, by singularity, a I c—contradicting c T a. The assumption d T a I c
is rejected by interchanging c and d in the former reasoning. Together, this yields
c ∼TI d. The converse direction is proved dually.

We can now prove the main claim of the present subsection.

Proposition 2. (E) holds iff (F1) and (F2) hold.

Proof. Let us firstly assume (F1) and (F2) in order to derive (E). So by TI-
separability of A and by lemmas 3 and 15, there are only countably many TI-
jumps. We may, therefore, presuppose a countable D+ ⊆ A which intersects with
B′ ∩ S whenever there is a TI-jump (B,B′). By IT -separability, there is a count-
able D− ⊆ A, and, similarly to the previous reasoning, we may assume that D−
intersects with the right-hand term of each IT -jump. Furthermore, by lemmas 9
and 12 (strong congruency of T*), for every B ∈ G0 we may pick dB from A such
that for all b ∈ B, b T* d. Let D0 be the countable set { dB | B ∈ G0 }. Assume
(a, b) ∈ T . We show that the countable set D− ∪ D+ ∪ D0 contains d such that
a T d ≺∼IT b.

79One firstly has to check that ≺∼T= T ∪ I is an “interval order” in the sense of [15].
Assuming this, [15] define sets B(a, b) := { d ∈ A | there is c ∈ A such that a ≺∼T c T
d ≺∼T b }. (In fact, [15] write A where we write B for having used A for another purpose
already.) Now one has to check that the condition a T d ≺∼IT b being part of our (E) is
equivalent to the original condition d ∈ B(a, b) \ (B(a, a) ∪B(b, b)).
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If not a T* b, there is c such that a T c IT b. Then by IT -separability, there is
d ∈ D− such that c ≺∼IT d ≺∼IT b. By (3) obtains a T d ≺∼IT b.

If a T* b, the way of reasoning depends on whether [a]TI , [b]IT , or none of
both contain a singular element.

If there is c ∈ S∩[a]TI , Lemma 17 yields c NIT b. By the additional assumption
on D−, the latter set contains some d ∼IT b. By strong congruency of T* obtains
a T d ≺∼IT b.

If there is c ∈ S ∩ [b]IT , Lemma 17 yields a NTI c, and D+ has been chosen
to contain some singular d ∼TI c. By Lemma 18, c ∼IT d. Furthermore, c ∼IT b,
yielding d ∼IT b. Now (3) yields a T d ≺∼IT b.

Finally, if S ∩ ([a]TI ∪ [b]IT ) = ∅, strong congruency of T* implies S ∩ aT* = ∅.
Therefore [a]TI ∈ G0, and there is some d ∈ D0 ∩ aT*. Strong congruency of T*
now implies d ∼IT b, and this yields a T d ≺∼IT b again.

For the other direction, we now assume (E) in order to derive (F1) and (F2).
So let D ⊆ A be countable such that for all (a, b) ∈ T there is d ∈ D such that
a T d ≺∼IT b.

For (F2), we show that there is a one-to-one map B 7→ dB from G0 into D. If
B ∈ G0, pick b from B and a from bT*. Now we may pick dB from D such that
b T dB ≺∼IT a.80 b T* a implies dB ∼IT a. If B′ 6= B is another element of G0,
Lemma 12 by way of (C1) yields that dB′ is not IT -equivalent to dB . Therefore,
dB 6= dB′ .

For the IT -separability part of (F1), assume a I c T b. Then c T d ≺∼IT b for
some d ∈ D, and, therefore, a ≺∼IT d ≺∼IT b.

Finally, TI-separability follows dually to the previous from the dual of (E),
which holds according to Corollary 9.

Instead of proving TI-separability above, we could, by Theorem 11 below, just
have proved that there are only countably many TI-jumps.81 Indeed, this is a
way to meet our announcement of proving Proposition 2 ‘just in terms of (A, T )’—
whereas the last sentence of the previous proof draws on Corollary 9, which was
not proved ‘just in terms of (A, T )’.

6.4 Singular-separability and -countability.

Proof of theorems 3 and 4. By Proposition 1, S− = ∅ iff S+ = ∅.
Otherwise, by strong congruency of I* (lemmas 9 and 10), the latter

induces a one-to-one map Σ− from S+/TI onto S−/IT , viz. Σ−([a]TI) =
[b]IT iff a I* b. This proves Theorem 4, already.

By (C1) as applied to I*, Σ− is an isomorphism from (S+/TI, T I/S+)
onto (S−/IT, IT/S−) (recall notation from Subsection 4.2). Therefore,
S+/TI is TI/S+-separable iff S−/IT is IT/S−-separable. Furthermore,
S+/TI is TI/S+-separable iff S+ is TI-separable, and the obvious dual
holds for IT -separability of S−. This proves Theorem 3.

80Independence on the choice of b holds in many respects, but is not needed here.
81If (B,B′) = ([b]TI , [b

′]TI) is a TI-jump such that b T a I b′ for some a ∈ A, there
is dB ∈ D such that b T dB ≺∼IT a. Indeed, b T* dB , because b NTI b

′. By strong
congruency of T*, dC 6= dB if (C,C′) 6= (B,B′) is another TI-jump. Therefore, there can
be only countably many TI-jumps.
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6.5 (F1), above, and below.

This subsection proves theorems 2 and 8; moreover, it proves, meeting the
announcement below Theorem 1, equivalence to (F1) of two “practically
weaker” versions.

Proof of Theorem 2. Assume (A, T ) is a semiorder. As Fishburn [8, 9,
Sec. 7.5] notes for deriving (F1) from T0-separability, any (countable) set
T0-dense in A is IT - and TI-dense in A, as well. But the converse direction
is hardly noticeably less obvious: If D is (countable and) IT -dense in A and
D′ is (countable and) TI-dense in A, D ∪D′ is (countable and) T0-dense in
A.82

Proof of Theorem 8. Firstly assume Condition (i) to derive (F1). Since
Condition (i) is self-dual, we confine ourselves to proving that (A, T ) is
IT -separable. By the assumption of singular-countability and regular-sepa-
rability, there is a countable D ⊆ A which intersects with each [a]IT where
a ∈ S− and which for every a, b ∈ A \ S− such that a IT b contains
some d such that a ≺∼IT d ≺∼IT b.83 Now assume just a IT b. If a ∈ S−,
there is an IT -equivalent d ∈ D. If not, Lemma 6 tells that there is some
c ∈ a(IT ) ∩ (IT )b. If c ∈ S−, there is an IT -equivalent d ∈ D. If not, D
contains some d such that a ≺∼IT d ≺∼IT c. In each case, a ≺∼IT d ≺∼IT b.

The implication from (F1) to Condition (iii) derives from Lemma 16.
Now, we need examples refuting the converse directions: Firstly, if (A, T )

is the natural interval order of all closed bounded real intervals, (F1) is
met, but not Condition (i). Indeed, in this case A = S− = S+, so (A, T )
is not singular-countable, since the real numbers correspond one-to-one to
the IT - as well as to the TI-equivalence classes. (F1) is met since this
correspondence even gives rise to an isomorphism from (A/IT, IT/A) onto
(R, <) as well as from (A/TI, TI/A) onto (R, >).

If (A, T ) is the natural interval order of all bounded real intervals, Con-
dition (iii) is met, but not (F1).84 Here, “open ends” indicate belonging
to A \ S− or A \ S+, while “closed ends” indicate belonging to S− or
S+. In each of these four cases, there is an isomorphism onto (R, <) or
onto (R, >) much like before, therefore Condition (iii) holds. On the other
hand, (A/IT, IT/A) (e.g.) is now isomorphic to the lexicographic order on
R× {0, 1}, which has one jump for each real and therefore is not separable
according to Lemma 15.85

82The claim of Theorem 2, thus, is so obvious that it deserves being mentioned only
because Fishburn seems to have overlooked it.

83In fact, d ∈ A \ S−, but this will not matter.
84This is just another, somewhat more technical, presentation of the example from

Subsection 3.3.
85Two rather “unnatural” (but more explicit and “parsimonious”) examples serving, in

view of our Theorem 5, for the same purpose have been presented by Fishburn in [8, 9,
Sec.s 7.5f.].
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Here come the announced “weak” versions of (F1).

Theorem 11. The following conditions are equivalent.

(i) (F1) holds;

(ii) A is IT -separable and has only countably many TI-jumps;

(iii) A is TI-separable and has only countably many IT -jumps.

Proof. (F1) implies the other two conditions by Lemma 15. By duality, it
remains to conclude (e.g.) from Condition (ii) that A is TI-separable.

Thus, assume Condition (ii). There is, then, a countable D being IT -
dense in A as well as a countable D0 ⊆ A intersecting with every [a]TI where
aNTI 6= ∅. For every (d, d′) ∈ (D×D)∩ IT , pick one cd,d′ from A such that
d I cd,d′ T d′. Let D1 be the countable { cd,d′ | d, d′ ∈ D; d IT d′ }. For
convenience, we aim at reductio and assume that the countable D0∪D1 ⊆ A
is not TI-dense in A.

If so, there is some (a, b) ∈ TI such that a ≺∼TI d ≺∼TI b for no d ∈
D0 ∩ D1. Therefore (think of D0), aNTI = ∅, and there are a0, a1, a2 ∈ A
such that a TI a0 TI a1 TI a2 TI b. This forces existence of “witnesses”
b0, b1, b2, b3 such that

a T b0 I a0 T b1 I a1 T b2 I a2 T b3 I b.

There are d0, d2 ∈ D such that

b0 ≺∼IT d0 ≺∼IT b1 IT b2 ≺∼IT d2 ≺∼IT b3.

By Lemma 1, d0 IT d2; so there is d ∈ D1 such that d0 I d T d2. By (3),
a T d0 I d T b3 I b; thus, a ≺∼TI d ≺∼TI b—contradicting the assumption.

6.6 “Weakening” Fishburn’s Condition (F2).

This subsection proves Theorem 7.
As G0 already served to reformulate (F2), we define a variant of it to

reformulate (G):

G1 := { [a]TI | a ∈ A; S+ ∩ [a]TI = ∅; aT* 6= ∅; S− ∩ aT* = ∅ }.

Thus, (G) tells G1 to be countable.
The definition of G1 differs to that of G0 in replacing S by S+ at one

place and by S− at another. Since S ⊆ S− ∩ S+ (Lemma 5), therefore,
G1 ⊆ G0.

By Proposition 1, however, S+ ∩ [a]TI = ∅ iff a /∈ S+. Thus, G1 may be
rewritten in the following way.

G1 = { [a]TI | a ∈ A \ S+; aT* 6= ∅; S− ∩ aT* = ∅ }.
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By Lemma 11, S+ ∩ [a]TI 6= ∅ iff a ∈ S+. The difference set G0 \ G1,
therefore, is

G2 := { [a]TI | a ∈ S+; aT* 6= ∅;
S ∩ [a]TI = ∅;
S ∩ aT* = ∅ 6= S− ∩ aT* }.

We shall compare this to the further variants

G3 := { [a]TI | a ∈ S+; aT* 6= ∅ };
G4 := { [a]TI | a ∈ A; aT* 6= ∅; S− ∩ aT* 6= ∅ }.

Proof of Theorem 7. Theorem 7, now, just tells that, if (F1), G0 is countable
iff G1 is countable. Being a subset of G0, G1 is countable if G0 is countable
without recourse to (F1). Thus, it suffices to prove that, if (F1) and if G1 is
countable, G0 is countable, as well. And this just amounts to showing that,
if (F1), G2 is countable. Now, G2 ⊆ G3 ∪G4, so it suffices to realize that, if
(F1), G3 and G4 are countable.

Concerning G3: Iff [a]TI ∈ G3, there are b, c ∈ A such that a T* b and
a I* c. In this case, c NIT b. Strong congruency of T* and NIT (lemmas
9, 12, 13), therefore, induces a one-to-one map [a]TI 7→ (NIT (aT*), aT*)86

from G3 into (even onto) the set of IT -jumps of A. Now, by (F1) and
Lemma 15, the set of these jumps is countable.

Concerning G4: Iff [a]TI ∈ G4, there are b, c ∈ A such that a T* b and
c I* b. In this case, a NTI c. Therefore, by strong congruency of NTI , there
is a one-to-one map [a]TI 7→ ([a]TI , aNTI) from G3 into (even onto) the set
of TI-jumps of A. Now, by (F1) and Lemma 15, the set of these jumps is
countable.

7 Necessity proofs.

In this section we prove that each of the representability conditions (iii) in
Theorem 5 and (iv) in Theorem 6 follows from one of the other conditions
listed in the respective theorem. Indeed, by Section 5, then, in each case
the representability condition is necessary for all the other conditions of the
respective theorem.—Finally, we nearly prove Corollary 5, only ignoring its
“component” concerning existence of O(B)RIRs.

The following just summarizes a proof technique from Fishburn’s [8].
We call ϕ a weak real R-homomorphism on X if it maps X into R and

R is some binary relation such that x R y (just) implies ϕ(x) < ϕ(y). Thus
in contrast to a strong one, a weak real R-homomorphism may treat R-
equivalent elements differently. Now the following differs from the “Real
Homomorphism Theorem” (Subsection 4.2) in but one word.

86NIT (aT*) here denotes { c ∈ A | c NIT b ∈ aT* for some b }.
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Real Homomorphism Corollary. There is a weak real R-homomor-
phism on X iff R weakly orders X such that X is R-separable.

Proof. If R weakly orders X such that X is R-separable, by the Real Ho-
momorphism Theorem there is a strong real R-homomorphism on X, which
a fortiori is a weak real R-homomorphism on X. If there is a weak real
R-homomorphism ϕ on X, define x R′ y by ϕ(x) < ϕ(y) for x, y ∈ X. Then
ϕ is a strong real R′-homomorphism, and by the Real Homomorphism Theo-
rem there is a countable D being R′-dense in X. Moreover, R∩(X×X) ⊆ R′,
and if x, y ∈ X such that x ≺∼R′ y, then x ≺∼R y. Therefore, D is R-dense in
X, as well.

The following completes necessity of Condition (iii) in Theorem 5 and
yields one part of necessity of Condition (iv) in Theorem 6.

Proposition 3. If (A, T ) has a RIR, it is singular- and regular-separable.

Proof. Let ρ be some RIR of (A, T ). We first show that S− is IT -separable,
ignoring the dual implicit claim. For any a ∈ S−, pick ba from I*a and qa
from ρ(ba) ∩ ρ(a) (Lemma 2). This amounts to a map ϕ : S− → R, a 7→ qa.
Now if a0, a1 ∈ S− and a0 IT a1, lower-singularity yields ba0 T a1, hence
ϕ(a0) < ϕ(a1). To sum up, ϕ is a weak real IT -homomorphism on S−, so
by the Real Homomorphism Corollary the latter is IT -separable.

Now we show that A \ S− is IT -separable and, again, omit the dual
claim. By Section 5, we may assume that ρ is a BRIR. Then ϕ : a→ inf ρ(a)
maps A \ S− into R. If a, b ∈ A \ S− and a IT b, there is c such that
a IT c IT b by Lemma 6. By Lemma 2, there are p ∈ ρ(a) and q ∈ ρ(c) such
that p < q < r for all r ∈ ρ(b). Hence ϕ(a) ≤ p < q ≤ ϕ(b) and, indeed,
ϕ(a) < ϕ(b). So this ϕ is a weak real IT -homomorphism on A \ S−, and
we conclude that A \ S− is IT -separable using the Real Homomorphism
Corollary.

The following completes necessity of Condition (iv) in Theorem 6.

Proposition 4. If (A, T ) has an ORIR, it is singular-countable.

Proof. Let ρ be an ORIR. Let S′ be a subset of S− which intersects exactly
once with each element of S−/IT . For each a ∈ S′ pick one ba from I*a.
Then J := { ρ(ba) ∩ ρ(a) | a ∈ S′ } is (by Lemma 2 and lower-singularity)
a set of pairwise disjoint open real intervals. The countable set of rational
numbers intersects with every open real interval, so J , hence S′, and hence
S−/IT is countable. By Theorem 4 (proved in Subsection 6.4 already)
S+/TI, then, is countable, as well.

Now, concerning Corollary 5:



8 SUFFICIENCY PROOFS. 35

Proposition 5. An ORIR of (A, T ) is singular-exact iff S− = ∅ iff S+ = ∅.

Proof. S− = ∅ iff S+ = ∅ iff I* = ∅—cf. Proposition 1. Now, if I* = ∅,
any ORIR is trivially singular-exact. On the other hand, if ρ is an ORIR
and a I* b, then ρ(a) ∩ ρ(b) is (by Lemma 2) an open (non-void) interval
and, hence, contains an infinity of points. So if ρ is singular-exact, then
I* = ∅.

8 Sufficiency proofs.

8.1 Content and general strategy.

This section completes proofs of theorems 5 and 6 as well as of corollaries 2
through 5 (subsections 3.3, 3.5, and 3.6). There is the “closed”, the “ar-
bitrary”, and the “open” case. In each case, one of theorems 1, 5, and 6
together with one or two of the corollaries mentioned forms a more com-
prehensive equivalence proposition. More precisely, in each case a num-
ber of countability conditions like (E) and the conditions of Theorem 8 is
claimed to be equivalent to several claims of existence of a RIR. Of these
existence claims, the ones from subsections 3.5 and 3.6 concerning exactness
and singular-exactness, are “logically” stronger than the ones from Subsec-
tion 3.3. We essentially show that, in each case, a countability condition
implies the strongest claim of existence of a RIR, an exact and—in the
first two cases—singular-exact one. Since Section 7 has shown that already
the “weak” claims of existence of an RIR (from theorems 5 and 6; for the
“closed” case it is known according to Theorem 1) imply the respective
countability conditions, the reasonings of the present section close the circle
required for the “comprehensive” claims, from which the single theorems
and corollaries follow.

8.2 Closed representations: proof of Corollary 3.

Concerning CRIRs, we have little more to say than Fishburn [8, 9], viz.
Corollary 3.

According to Subsection 8.1, we instead ought to prove (e.g.)

Corollary 10. If (F1) and (F2), there is an exact and singular-exact
CBRIR of (A, T ).

However, Fishburn already has done most of this work. By proving Corol-
lary 3, we add the little difference concerning our singularity notions as well
as a simple equivalence literally not comprised by Corollary 10.

Proof of Corollary 3. Assume ρ is a CBRIR of (A, T ), u : A → R, a 7→
inf ρ(a), and v : A→ R, a 7→ sup ρ(a). It is then obvious from the definitions
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and from Lemma 2 that ρ is exact iff u is a real IT -homomorphism on A and
v is a real TI-homomorphism on A. Thus let us call the FPR (u, v) exact
in this case. It is likewise obvious that ρ is singular-exact iff u(b) = v(a)
for a I* b. Call the FPR (u, v) singular-exact in this case. It is now clear
that the last two conditions of Corollary 3 are equivalent. As an exact and
singular-exact CBRIR is a CRIR, it remains to show that, if there is a CRIR,
there is an exact and singular-exact FPR. So assume (A, T ) has a CRIR.

By Theorem 1 or the reasoning in Section 5, (A, T ) has a CBRIR.87 By
Fishburn’s [8, Thm. 2] or [9, Thm. 7.6], (A, T ) has an exact FPR (u′, v′).88

Define u, v : A → R by v(a) := v′(a) for a ∈ A \ S+, u(b) := u′(b) for
b ∈ A \ S−, and u(b) := v(a) := (u′(b) + v′(a))/2 for a I* b.

For a I* b, Lemma 2 yields u′(b) ≤ v′(a). If, moreover, u′(b) = v′(a),
then u(b) = u′(b) and v(a) = v′(a). If u′(b) < v′(a) instead, exactness yields
the following essential facts: the open interval (u′(b), v′(a)) does not intersect
with u′[A] ∪ v′[A] (the image sets of u′, v′), u′(b) /∈ u′[A \ [b]IT ] ∪ v′[A], and
v′(a) /∈ v′[A \ [a]TI ] ∪ u′[A]. For these reasons, the relevant inequalities
remain true when the ‘prime’ strokes in u′, v′ are removed—this means,
(u, v) inherits being an exact FPR from (u′, v′). By construction, moreover,
(u, v) is singular-exact.

8.3 A representing linear order of “cuts”.

In principle, our following proofs just vary Fishburn’s [8, 9] proof that (F1) implies
existence of an ARIR. However, we use a different approach. While Fishburn ap-
plied the Real Homomorphism Theorem to appropriate weak orders on a “doubled”
version of A, we apply it to appropriate suborders of one given linear order.89 The
following may be considered a modification of [2].

Call C ⊆ A a cut if it is closed under ≺∼TI , i.e., if a ≺∼TI c ∈ C implies
a ∈ C.90 Let K be the set of these cuts. In order to have a set (instead of
the proper class ⊂), we use E to denote ⊂ ∩ (K × K). Now, (K,E) is a
linear order.

Proof. Irreflexivity and transitivity of E on K are clear. For trichotomy, assume
C,C ′ ∈ K, C 6= C ′, and C 6⊂ C ′. Thus, there is some c ∈ C \C ′. We show C ′ ⊂ C.

87We need this for the following because of our exegetical doubts according to Fn. 18
above. Also cf. Fishburn’s [8] proof of his Thm. 5—for the previous point as well as for
our withholding details.

88Indeed, by Fishburn’s theorem, the FPR may be assumed to be singular-exact in a
sense restricted to Fishburn’s notion of singularity, but this does not help here.

89Fishburn [8, 9] defines one relation on a “doubled” version of A for each of three
purposes. In order to apply the Real Homomorphism Theorem, he then has to prove that
this relation is a weak order. Using suborders of one linear order, we bypass this step.—
However, there may well arise too much clumsy difficulties from our approach which may
advise to go along Fishburn’s lines instead of ours. We have not yet investigated this
suggestion. If other approaches should prove to be much less clumsy, our work will at
least contribute to realize this fact.

90Our “cuts” are something quite different from the “instants” used in [19] according
to the remark ensuing the proof of its Prop. 2—they typically violate its (14).
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If C ′ = ∅, we are ready. So assume c′ ∈ C ′. Now, c′ ≺∼TI c or c TI c′. In the
first case, c′ ∈ C by definition of cuts. In the second case, c ≺∼TI c

′; so c ∈ C ′ by
the definition of cuts—but this contradicts the former assumption of c /∈ C ′. We
conclude c′ ∈ C, thus C ′ ⊆ C and, by the assumption of C 6= C ′, C ′ ⊂ C.91

By the way, A → I(K,E), a 7→ {C ∈ K | Ta ⊂ C ⊆ ≺∼TIa } is an IR
of (A, T ) in (K,E).92 This amounts to another proof that (A, T ), if only
assumed to consist of an irreflexive T ⊆ A × A and to satisfy (W), has an
IR in some linear order.93

8.4 Two special kinds of cuts and their interrelations.

We shall meet cuts of two special kinds:

Lemma 19. For a ∈ A, Ta and ≺∼TIa are cuts.

Proof. Ta is a cut by (4), and ≺∼TIa is a cut by negative transitivity of the weakly
ordering TI.

Furthermore, we shall need some knowledge on their interrelations and on
how the latter interrelate with properties of the “source” objects in A:

Lemma 20. If Ta ⊂ ≺∼TIb and b /∈ S+, then a ITITI b.

Proof. Assume Ta ⊂ ≺∼TIb and b /∈ S+. Then, by (4), not b T a. By b /∈ S+,
neither b nor anything is an IT -maximum of Ib. Hence, if a T b, then there is some
c such that a I a T b IT c I b. If a I b, neither a nor anything is in IT -Max Ib, so
there are c, c′ ∈ Ib such that a IT c IT c′ I b.

Lemma 21. If a (I ∪ ITI ∪ T ) b, then Ta ⊂ ≺∼TIb.

Proof. Assume a I b; so b /∈ Ta. Additionally assume c T a for some c. Then
c TI b. To sum up, Ta ⊂ ≺∼TIb.—Now assume a IT c I b for some c. Then, using
(3) and the previous, Ta ⊆ Tc ⊂ ≺∼TIb. The case of IT follows by reflexivity of
I.—Finally, assume a T b and c T a for some c as firstly. Then c TT b, so, by
transitivity (Lemma 4), c T b I b and c TI b—desired as in the first case.

Lemma 22. If a T* b, then ≺∼TIa = Tb.

91Obviously, the proof works for any binary asymmetric relation on A instead of TI.
92This is a modification of [2]. The proof uses Lemma 19 below.
93The presumably earliest proof by B. Russell and N. Wiener [21] uses the axiom of

choice. Furthermore, it is easy to see that Fishburn’s definition [9, Sec. 2.1] of interval
orders ((W) replaced by if a T b and a′ T b′, then a T b′ or a′ T b) is equivalent to
that of what Wiener calls a ‘relation of complete sequence’. (Thomason [19, 20] adds two
relations defined from the first one and calls ‘event structures’ what results; in principle,
however, this is the same.) Fishburn [9, Thm. 2.6] even proves that any interval order
(as defined by irreflexivity of T and by (W) or a version of the latter) has a CBIR. Both
proofs, and neither ours, do not need the axiom of choice.
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Proof. Assume a T* b. By (4), then, ≺∼TIa ⊆ Tb. For equality assume, additionally,
c T b. Then a T* b entails not a TIT b and, therefore, not a TI c, which means
c ≺∼TI a (TI weakly ordering A).

Lemma 23. If ≺∼TIa ⊂ Tb, then a TIT b.

Proof. Assume ≺∼TIa ⊂ Tb. Hence, a T b. Now, ≺∼TIa being proper subset of Tb
by Lemma 22 rejects the stronger proposition a T* b. Therefore, a TIT b.

8.5 Existence of arbitrary real representations.

To complete proofs of our claims on ARIRs—viz. Theorem 5 and Corollary 4,
we prove the following

Proposition 6. If S− and { a ∈ A \ S− | NITa = ∅ } are IT -separable and,
furthermore, A \ S+ is TI-separable, (A, T ) has an exact and singular-exact
ABRIR.

Note that here is a condition logically (or set-theoretically) weaker than our
original condition of singular- and regular-separability of (A, T ) (even weaker
than the respective condition yielded by Theorem 3). The new condition is
entailed by the original one and, therefore, necessary for real representability,
as well. Indeed, by Lemma 16 a subset of A \ S− is IT -separable if A \ S−
is.

Idea of proof. Fishburn would start a proof of Proposition 6 by “merging” some
of the equivalence classes associated with the weak order on a doubled version
of A which he has defined in his proof of his part of our Theorem 1. We are
replacing such “merging” by assigning same cuts in some cases of “overlapping” or
of precedence with respect to IT or to TI. “Translated” into Fishburn’s method,
we are (in general) merging much more equivalence classes than Fishburn ever did
(in [8, 9]).94

Proof of Proposition 6. First part of construction. For brevity, letA1 := S−,
A2 := { a ∈ A \ S− | NITa = ∅ } A3 := A \ S+; furthermore K1 := {Ta |
a ∈ A1 }, K2 := {Ta | a ∈ A2 }, and K3 := {≺∼TIa | a ∈ A3 }. For a ∈ A, let

γ−(a) :=
{
Ta if a ∈ S− ∪A2;
Tb if a /∈ S− and b NIT a.

γ−(a) is well-defined in the second case by (3) and lemmas 9f. (strong con-
gruency of NIT ). By Lemma 19, γ−(a) is an element of K in both cases.
Thus we have defined a map γ− from A into K. Since—by Lemma 14—
b NIT a implies b ∈ S−, the image set γ−[A] is K1 ∪K2.

94Fishburn did not merge more than two equivalence classes, while we (in Fishburn’s
terms) are merging three of them in some cases. E.g., we are merging respective equivalence
classes of a+, b−, and c− (one of Fishburn’s notations) whenever a ∈ A \ S+, c ∈ A \ S−,
and a T* b NIT c.
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Next let, for a ∈ A,

γ+(a) :=
{
Tb if a I* b;
≺∼TIa if a /∈ S+.

By (3) and strong congruency of I* (Lemma 10), γ+(a) is well-defined in
the first case. a I* b implies a ∈ S+ (Proposition 1), so the two cases
exclude each other and exhaust all possibilities, indeed. As ≺∼TIa is a cut
(Lemma 19) and by the above reasoning concerning γ−, γ+(a) is in K again
in both cases, so we have a map γ+ : A → K. Since a I* b also implies
b ∈ S−, its image set γ+[A] is K1∪K3. Thus, γ−[A]∪γ+[A] = K1∪K2∪K3.
Call the latter set K0. According to the above thoughts about γ− and γ+, it
is a subset of K. Recall that, now, (K0, E) is a linear order and, therefore,
a weak order.

Separability. Assume the hypothesis of Proposition 6; in particular, there
are countable D1 being IT -dense in S−, D2 IT -dense in A2, and D3 TI-
dense in A \ S+ (so Dk ⊆ Ak for k = 1, 2, 3). In order to apply the Real
Homomorphism Theorem, we show that K0 is E-separable. Let D′1 := {Td |
d ∈ D1 }, D′2 := {Td | d ∈ D2 }, and D′3 := {≺∼TId | d ∈ D3 }. We show
that D′ := D′1 ∪D′2 ∪D′3—being countable—moreover is E-dense in K0.

Clearly, D′i ⊆ Ki for i = 1, 2, 3; so D′ ⊆ K0. For density, assume
C,C ′ ∈ K0 and C ⊂ C ′. We distinguish 9 cases numbered i.j, i, j = 1, 2, 3,
where Case i.j means assuming C ∈ Ki and C ′ ∈ Kj . In Case i.j we may
pick a from Ai and b from Aj such that

C [C ′] =
{
Ta [Tb] if i [j] < 3;
≺∼TIa [≺∼TIb] if i [j] = 3.

We shall write [c1, c2]k for { c0 ∈ Dk | c1 ≺∼Rk c0 ≺∼Rk c2 } where
R1 := R2 := IT and R3 := TI. (Hence, 1 indicates (S−, IT ), 2 indicates
(A2, IT ), and 3 indicates (S+, T I) being “reference order” for taking “inter-
vals” [notion generalized from linear orders].—c1 or c2 may be no member of
[c1, c2]k.) Furthermore, we shall write K* for {C0 ∈ K0 | C ⊆ C0 ⊆ C ′ }∩D′
(recall ⊆ = ≺∼E on K). Thus, we are trying to show K* 6= ∅.

Keep in mind that i, j < 3 implies Ta ⊂ Tb, so a IT b follows by (3).
Case 1.1. Here, by hypothesis and the previous remark, we may pick d

from [a, b]1. Then Td ∈K* by (3).
Case 1.2. Again, a IT b. By j = 2, NIT b = ∅, so we may pick c from

a(ITIT ) ∩ (IT )b. If there is some c′ ∈ NIT c, then a IT c′ IT b, and there
is (by Lemma 14) some d ∈ [a, c′]1 such that Td ∈K* by applying (3) and
transitivity of IT .—Otherwise, NIT c = ∅, so there is some d ∈ [a, c]1∪ [c, b]2,
and Td ∈K* essentially as before.

Case 2.1. Here, a ITIT c IT b for some c by a /∈ S− and Lemma 6.
Continue almost as in Case 1.2 (using [c′, b]1, [a, c]2, and [c, b]1 instead).

Case 2.2. By hypothesis, pick d from [a, b]2 and proceed analogously to
Case 1.1.
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For the following cases, recall that ≺∼TI is involved when i = 3 or j = 3.
Case 3.3. Here, ≺∼TIa ⊂ ≺∼TIb and, therefore (Lemma 19 and b /∈ ≺∼TIa),

a TI b. Now ≺∼TId ∈K* for some d ∈ [a, b]3.
Case 1.3. By Lemma 20, a(ITIT ) ∩ Ib 6= ∅. If there even is some

c ∈ a(ITIT ) ∩ Ib ∩ S−, there is some d ∈ [a, c]1 such that Td ∈K* by (3)
and Lemma 21. Otherwise, there might be c, c′ such that c′ NIT c I b. In
this subcase, c′ ∈ a(IT )∩NIT c∩S− as in Case 1.2, so pick d from [a, c′]1 and
continue as above (using the ITI case of Lemma 21). If the two previous
subcases apply to no c, there only may be c in a(IT )∩ Ib∩A2. By b /∈ S+,
then, there is some c′ ∈ c(IT ) ∩ Ib, which (being element of a(ITIT ) ∩ Ib)
must be in A2, as well. Now, there is some d ∈ [c, c′]2 such that Td ∈K* by
(3) and Lemma 21.

Case 2.3. If there are c, c′ ∈ S− such that a IT c IT c′ ITI b, one
may pick d from [c, c′]1 in order to get, by (3) and Lemma 21, Td ∈K*.
Otherwise, by a /∈ S− and lemmas 6 and 20, there are c1, c2, c3 such that
a ITIT c1 IT c2 IT c3 ITI b. In this subcase, two out of c1, c2, c3 cannot
both be in S−. Among these two, only one c can meet NIT c 6= ∅ (Lemma 14;
first subcase of 2.3 being excluded here). Concerning the other—c′, say—,
c′ ∈ A2, and for some d ∈ [a, c′]2, Td ∈K* as earlier.

Cases 3.1 and 3.2. By Lemma 23, a(TI)∩Tb 6= ∅. If there even is some
c ∈ (a(TI)∩Tb)\S+, there is some d ∈ [a, c]3 yielding ≺∼TId ∈K* by lemmas
1, 3, and 21 (case of T ), and by (W). Otherwise, a(TI)∩ Tb ⊆ S+. If, now,
there are c, c′ ∈ S+ such that a TI c TI c′ T b, then there is d ∈ [c, c′]3,
and ≺∼TId ∈K* similarly as before. Otherwise again, a(TI) ∩ Tb ⊆ a(T*I).
Then, by Lemma 22, ≺∼TIa = Tc for some c ∈ aT*, so one of the above cases
with i, j < 3 applies.

Second part of construction. Now that K0 is E-separable, we may choose
a real E-homomorphism ϕ on K0. Thereby, we may define, for a ∈ A,

ρ−(a) :=
{
≥ϕ(γ−(a)) if a ∈ S−;
>ϕ(γ−(a)) if a /∈ S−;

ρ+(a) :=
{
≤ϕ(γ+(a)) if a ∈ S+;
<ϕ(γ+(a)) if a /∈ S+;

ρ(a) := ρ−(a) ∩ ρ+(a).

(Now, e.g., ρ(a) = [ϕ(γ−(a)), ϕ(γ+(a))] if a ∈ S− ∩ S+.)
It remains to show that this ρ is an exact and singular-exact ABRIR.
A lemma. Proposition 1 yields

If a I* b, then γ+(a) = Tb = γ−(b).(6)

Another lemma. Suppose a ∈ I*b \ S. Then by Lemma 5, not a I* a,
i.e., not a ∈ IT -Max Ia. Hence, by Lemma 8, not a ∼IT b. On the other
hand, b ∈ IT -Max Ia, hence a ≺∼IT b. To conclude:

If a ∈ I*b \ S, then a IT b.(7)



8 SUFFICIENCY PROOFS. 41

Image set consisting of bounded real intervals. For ρ(a) ∈ I(R, <) (a ∈
A), it clearly suffices to show that ρ(a) 6= ∅. It will then be clear that ρ(a)
has ϕ(γ−(a)) as a lower and ϕ(γ+(a)) as an upper bound.—First, consider
a ∈ S. By Lemma 5, then, S ⊆ S− ∪ S+, so, by (6), γ−(a) = Ta = γ+(a)
and ρ(a) = {ϕ(Ta)} 6= ∅.—Now suppose a /∈ S. We are going to show
γ−(a) ⊂ γ+(a) in order to obtain inf ρ(a) = ϕ(γ−(a)) < ϕ(γ+(a)) = sup ρ(a)
and, thus, (inf ρ(a)+sup ρ(a))/2 ∈ ρ(a) 6= ∅. There are four cases according
to which two of S−, A \ S−, A \ S+, S+ a belongs. Recall that, by
trichotomy of E, C ⊂ C ′ iff C ′ \ C 6= ∅ whenever C,C ′ ∈ K.

a ∈ S+ ∪ S−: Here, there is some b ∈ aI*, so there is some c ∈ aI ∩ Tb
by (7). The latter entails c ∈ Tb \ Ta, hence γ−(a) = Ta ⊂ Tb = γ+(a).

a ∈ S+ \ S−: If NITa = ∅, then γ−(a) = Ta ⊂ Tb = γ+(a) nearly as
before.95 Otherwise, there are b, c such that γ−(a) = Tb, γ+(a) = Tc, and
b NIT a I* c. (7) yields b IT a IT c and, by transitivity of the weakly
ordering IT , b IT c. Now, γ−(a) = Tb ⊂ Tc = γ+(a) nearly as in the
previous case.

a ∈ S− \ S+: Here, γ−(a) = Ta ⊂ ≺∼TIa = γ+(a) by a ∈ ≺∼TIa \ Ta.
a /∈ S− ∪S+: If NITa = ∅, the previous proof applies, again. Otherwise,

there is some b ∈ NITa, so a ∈ ≺∼TIa \ Tb by (5), and, finally, γ−(a) = Tb ⊂
≺∼TIa = γ+(a).

ρ interval representation. We have to show that a T b iff

ρ+(a) ∩ ρ−(b) = ∅.(8)

There are four cases according to which two of S−, A \ S− a belongs and
to which two of S+, A \ S+ b belongs.

a ∈ S+, b ∈ S−: Here, there is some c ∈ I*a such that ρ+(a) = ≤ϕ(Tc).
Furthermore ρ−(b) = ≥ϕ(Tb). We need a number of equivalences dependant
on these conditions. The first is a T b iff c IT b. a T b implies c I a T b—
one direction. c ∈ I*a means c ∈ IT -Max Ia, so c IT b entails not a I b.
Similarly, c I* a implies a ≺∼IT b, so c IT b entails a IT b (Lemma 1) and
not b T a (cf. (5))—the equivalence is established.—Detailed proofs of the
further equivalences may be left to the reader: (a T b iff) c IT b iff (cf. (3))
Tc ⊂ Tb iff sup ρ+(a) < inf ρ−(b) iff (8).

a ∈ S+, b /∈ S−: Consider ρ+(a) and c as before. If NIT b = ∅, then
ρ−(b) = >ϕ(Tb). Now, a T b entails (8) as before, again. For the other
direction, (8) at first only yields sup ρ+(a) ≤ inf ρ−(b), Tc ⊆ Tb, and c ≺∼IT
b. However, c ∈ S− while b /∈ S−. Thus, as S− is IT -congruent, not
c ∼IT b, so c IT b obtains, and a T b is derived as in the previous case.—
If, on the other hand, there is d ∈ NIT b, we get ρ−(b) = >ϕ(Td). Some
appropriate modification of the above yields a T b iff c ≺∼IT d iff Tc ⊆ Td iff
sup ρ+(a) ≤ inf ρ−(b) iff (8).

95Distinction of cases according to the cases of the definitions of γ−, γ+ here and below
might be shorter; however, we suppose that it rather would be less perspicuous.
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a /∈ S+, b ∈ S−: Here, ρ+(a) = <ϕ(≺∼TIa) and ρ−(b) = ≥ϕ(Tb). Now,
a T b iff ≺∼TIa ⊆ Tb iff sup ρ+(a) ≤ inf ρ−(b) iff (8).

a /∈ S+, b /∈ S−: Here, ρ+(a) = <ϕ(≺∼TIa) as previously. If NIT b = ∅,
then ρ−(b) as previously, and the previous reasoning applies, again. Other-
wise, pick d from NIT b. Then, ρ−(b) = >ϕ(Td) as in the second case above,
and a T b follows from ≺∼TIa ⊆ Td by (W). a T b, conversely, does not allow
d T a, since the latter would contradict d NIT b by (1). Neither, it allows
d I a, since this would contradict d NIT b by a /∈ S+ and (W) (consider
d IT d′ IT d′′, d′, d′′ ∈ Ia, then d IT d′ IT b). To conclude, a T b yields
a T d; so a T b iff ≺∼TIa ⊆ Td iff sup ρ+(a) ≤ inf ρ−(b) iff (8).

Exactness. By IT -congruency of S− and of A \ S− (Lemma 11; com-
plements are congruent because the whole set is), strong IT -congruency of
NIT , and (3), ρ−(a) = ρ−(b) if a ∼IT b. By TI-congruency of S+ and of
A \ S+, strong TI-congruency of I*, and (4), ρ+(a) = ρ+(b) if a ∼TI b.

Singular-exactness. By (6), ρ(a) ∩ ρ(b) = {ϕ(Tb)} if a I* b.

8.6 Existence of open real representations.

To complete proofs of our claims on ORIRs—viz. Theorem 6 and corollaries 2
and 5, we prove the following

Proposition 7. If (A, T ) is singular-countable and regular-separable, it has
a WFPR (u, v) such that u is a real IT -homomorphism and v is a real TI-
homomorphism.

Proof. Assume (A, T ) is singular-countable and regular-separable. This is a
special case of the hypotheses in Proposition 6, so there are ϕ, ρ−, ρ+, ρ as
in our proof of Proposition 6.

By R+ we denote the set of real numbers r > 0. Let exp : R→ R+, r 7→
er.96 Then exp ◦ϕ is a real E-homomorphism like ϕ and could have been
used for defining ρ, as well. Without loss of generality, therefore, we may
assume that each ϕ(C) > 0 (C ∈ K0); so each ρ(a) ∈ I(R+, <) (a ∈ A).
Let Q0 := { inf ρ(a) | a ∈ S− } ⊆ R+. Since ρ is exact, Q0 is countable
by singular-countability. Thus, we may choose some sequence (qn)n∈N such
that n 7→ qn maps N one-to-one onto Q0. (We are somewhat replacing each
point qn of Q0 by an interval of length 2−n.)

Now let ψ−, ψ+ : R+ → R+ such that ψ−(r) := r +
∑
n∈N,qn<r 2−n

and ψ+(r) := r +
∑
n∈N,qn≤r 2−n. (The sums are subseries of a convergent

geometric series and have a value independent on the order by which partial
sums are taken.)97

96e is Euler’s number 2,71828. . .
97More precisely, let p

(r)
n := 2−n if qn < r and p

(r)
n := 0 otherwise; and let q

(r)
n := 2−n if

qn ≤ r and q
(r)
n := 0 otherwise. Then ψ−(r) := r+

∑∞
n=0

p
(r)
n and ψ+(r) := r+

∑∞
n=0

q
(r)
n .
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Next let, for a ∈ A,

u(a) :=
{
ψ−(inf ρ(a)) if a ∈ S−;
ψ+(inf ρ(a)) if a ∈ A \ S−;

v(a) :=
{
ψ+(sup ρ(a)) if a ∈ S+;
ψ−(sup ρ(a)) if a ∈ A \ S+;

This defines u, v : A→ R+. (u, v) straightforwardly proves to be a WFPR of
(A, T ) having the additional ‘homorphism’ property required by the propo-
sition.

However, one might overlook simple proofs, so we try to present one as follows.
We consider a, b ∈ A and show that a T b iff

v(a) ≤ u(b).(9)

But we know that a T b is equivalent to (8), hence it suffices to show that (9) is
equivalent to (8).

Assume (8). Then sup ρ(a) ≤ inf ρ(b). If sup ρ(a) < inf ρ(b), then (9) follows
from

ψ−(r) ≤ ψ+(r) < ψ−(r′) ≤ ψ+(r′) for 0 < r < r′.(10)

If sup ρ(a) = inf ρ(b) =: r0, then one of ρ+(a), ρ−(b) is open; hence a ∈ A \ S+ or
b ∈ A \ S− by definitions of ρ−, ρ+, furthermore v(a) = ψ−(r0) or u(b) = ψ+(r0),
and this yields (9).

Now assume (8) does not hold. In this case, inf ρ(b) ≤ sup ρ(a). If inf ρ(b) <
sup ρ(a), then (10) yields u(b) < v(a). If inf ρ(b) = sup ρ(a) = r0, then ρ(a)∩ρ(b) =
{r0}.98 Lemma 2 leads from this to a I* b; hence Proposition 1 yields r0 ∈ Q0 and
u(b) = ψ−(r0) < ψ+(r0) = v(a). Thus, not (8) implies not (9), and we know that
(u, v) is a WFPR of (A, T ).

That u is a weak99 real IT -homomorphism and v a weak real TI-homomorphism
follows from Lemma 2 and ρ being an IR. That they are even strong ones follows
from exactness of ρ and from respective congruency of S−, A \ S−, A+, A \ S+.

9 Proofs concerning semiorders.

This section deals with Subsection 3.7.
Corollaries 6 through 8, however, are straightforward from the definitions

and Lemma 2—recognizing that (A, T ) is a semiorder iff a IT b TI a for no
a, b ∈ A.

Proof of Theorem 9. Assume (A, T ) is the natural interval order of all real
intervals having length 1 and containing their lower bounds and, for reduc-
tio, ρ is a strictly semiorderlike RIR of (A, T ). Clearly, then, (A, T ) is a
semiorder. If r ∈ R, let ar := [r, r + 1) and br := [r, r + 1]. Some applica-
tions of Lemma 2 are ensuing: For r ∈ R, there is some qr ∈ ρ(br−1)∩ρ(br).

98Assumption of not (8) is still at work.
99Cf. Section 7.



10 ACKNOWLEDGEMENTS 44

Moreover, ar T br+1 I br, so (by strict semiorderlikeness) ρ(ar) <-exceeds
ρ(br) below, i.e., pr < q for some pr ∈ ρ(ar) and all q ∈ ρ(br). In particular,
pr < qr. If r < r′, then br−1 T ar′ and, hence, qr < pr′ . Therefore, the
uncountably many open real intervals in { (pr, qr) | r ∈ R } are pairwise
disjoint, and each intersects with the countable set of rational numbers—a
contradiction.
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